
www.allitebooks.com

http://www.allitebooks.org

NHibernate in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

NHibernate in Action

PIERRE HENRI KUATÉ
TOBIN HARRIS

CHRISTIAN BAUER
 GAVIN KING

M A N N I N G
Greenwich

(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Cynthia Kane
Manning Publications Co. Copyeditor: Tiffany Taylor
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-932394-92-4
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To my parents, Henri and Jeannette Kuaté,
who have always believed in me

 —P.H.K.

 To my mum, Diana Ashworth
 She is the kindest and most generous person I know

 —T.H.

brief contents
PART 1 DISCOVERING ORM WITH NHIBERNATE............................. 1

1 ■ Object/relational persistence in .NET 3

2 ■ Hello NHibernate! 24

PART 2 NHIBERNATE DEEP DIVE ... 49

3 ■ Writing and mapping classes 51

4 ■ Working with persistent objects 100

5 ■ Transactions, concurrency, and caching 134

6 ■ Advanced mapping concepts 166

7 ■ Retrieving objects efficiently 207

PART 3 NHIBERNATE IN THE REAL WORLD.................................. 257

8 ■ Developing NHibernate applications 259

9 ■ Writing real-world domain models 286

10 ■ Architectural patterns for persistence 319

vii

contents
foreword xvii
preface xxi
acknowledgments xxiii
about this book xxv

PART 1 DISCOVERING ORM WITH NHIBERNATE 1

1 Object/relational persistence in .NET 3
1.1 What is persistence? 5

Relational databases 5 ■ Understanding SQL 6 ■ Using SQL
in .NET applications 6 ■ Persistence in object-oriented
applications 6 ■ Persistence and the layered architecture 7

1.2 Approaches to persistence in .NET 9
Choice of persistence layer 9 ■ Implementing the entities 11
Displaying entities in the user interface 13 ■ Implementing
CRUD operations 14

1.3 Why do we need NHibernate? 15
The paradigm mismatch 15 ■ Units of work and conversations 16
Complex queries and the ADO.NET Entity Framework 18
ix

CONTENTSx
1.4 Object/relational mapping 21
What is ORM? 21 ■ Why ORM? 21

1.5 Summary 23

2 Hello NHibernate! 24
2.1 “Hello World” with NHibernate 25

Installing NHibernate 25 ■ Create a new Visual Studio project 25
Creating the Employee class 26 ■ Setting up the database 27
Creating an Employee and saving to the database 27 ■ Loading an
Employee from the database 29 ■ Creating a mapping file 29
Configuring your application 31 ■ Updating an
Employee 32 ■ Running the program 33

2.2 Understanding the architecture 33
The core interfaces 35 ■ Callback interfaces 36 ■ Types 37
Extension interfaces 37

2.3 Basic configuration 38
Creating a SessionFactory 38 ■ Configuring the ADO.NET
database access 41

2.4 Advanced configuration settings 44
Using the application configuration file 44 ■ Logging 47

2.5 Summary 48

PART 2 NHIBERNATE DEEP DIVE 49

3 Writing and mapping classes 51
3.1 The CaveatEmptor application 52

Analyzing the business domain 52 ■ The CaveatEmptor
domain model 53

3.2 Implementing the domain model 55
Addressing leakage of concerns 55 ■ Transparent and
automated persistence 55 ■ Writing POCOs 56
Implementing POCO associations 58 ■ Adding logic
to properties 61

3.3 Defining the mapping metadata 63
Mapping using XML 63 ■ Attribute-oriented programming 65

CONTENTS xi
3.4 Basic property and class mappings 66
Property mapping overview 66 ■ Using derived properties 68
Property access strategies 68 ■ Taking advantage of the reflection
optimizer 70 ■ Controlling insertion and updates 71 ■ Using
quoted SQL identifiers 72 ■ Naming conventions 72 ■ SQL
schemas 73 ■ Declaring class names 74 ■ Manipulating
metadata at runtime 75

3.5 Understanding object identity 76
Identity versus equality 76 ■ Database identity with
NHibernate 77 ■ Choosing primary keys 79

3.6 Fine-grained object models 81
Entity and value types 81 ■ Using components 82

3.7 Introducing associations 86
Unidirectional associations 86 ■ Multiplicity 86 ■ The simplest
possible association 87 ■ Making the association bidirectional 88
A parent/child relationship 90

3.8 Mapping class inheritance 91
Table per concrete class 92 ■ Table per class hierarchy 93 ■ Table
per subclass 95 ■ Choosing a strategy 98

3.9 Summary 99

4 Working with persistent objects 100
4.1 The persistence lifecycle 101

Transient objects 102 ■ Persistent objects 102 ■ Detached
objects 103 ■ The scope of object identity 104 ■ Outside the
identity scope 105 ■ Implementing Equals() and
GetHashCode() 106

4.2 The persistence manager 110
Making an object persistent 110 ■ Updating the persistent state
of a detached instance 111 ■ Retrieving a persistent object 112
Updating a persistent object transparently 113 ■ Making an
object transient 113

4.3 Using transitive persistence in NHibernate 114
Persistence by reachability 115 ■ Cascading persistence
with NHibernate 116 ■ Managing auction categories 117
Distinguishing between transient and detached instances 120

CONTENTSxii
4.4 Retrieving objects 121
Retrieving objects by identifier 122 ■ Introducing Hibernate
Query Language 123 ■ Query by Criteria 124 ■ Query by
Example 124 ■ Fetching strategies 125 ■ Selecting a fetching
strategy in mappings 127 ■ Tuning object retrieval 132

4.5 Summary 133

5 Transactions, concurrency, and caching 134
5.1 Understanding database transactions 135

ADO.NET and Enterprise Services/COM+ transactions 136
The NHibernate ITransaction API 137 ■ Flushing the
session 138 ■ Understanding connection-release modes 139
Understanding isolation levels 140 ■ Choosing an isolation
level 141 ■ Setting an isolation level 143 ■ Using pessimistic
locking 143

5.2 Working with conversations 146
An example scenario 146 ■ Using managed versioning 147
Optimistic and pessimistic locking compared 149 ■ Granularity of a
session 150 ■ Other ways to implement optimistic locking 151

5.3 Caching theory and practice 152
Caching strategies and scopes 153 ■ The NHibernate cache
architecture 155 ■ Caching in practice 159

5.4 Summary 164

6 Advanced mapping concepts 166
6.1 Understanding the NHibernate type system 167

Associations and value types 167 ■ Bridging from objects to
database 168 ■ Mapping types 168 ■ Built-in mapping
types 169 ■ Using mapping types 172

6.2 Mapping collections of value types 181
Storing value types in sets, bags, lists, and maps 181 ■ Collections
of components 186

6.3 Mapping entity associations 189
One-to-one associations 189 ■ Many-to-many associations 193

6.4 Mapping polymorphic associations 200
Polymorphic many-to-one associations 201 ■ Polymorphic
collections 203 ■ Polymorphic associations and table-per-concrete-
class 204

6.5 Summary 205

CONTENTS xiii
7 Retrieving objects efficiently 207
7.1 Executing queries 208

The query interfaces 208 ■ Binding parameters 211 ■ Using
named queries 214 ■ Using query substitutions 215

7.2 Basic queries for objects 215
The simplest query 215 ■ Using aliases 216 ■ Polymorphic
queries 217 ■ Restriction 217 ■ Comparison operators 218
String matching 220 ■ Logical operators 221 ■ Ordering query
results 221

7.3 Joining associations 222
NHibernate join options 223 ■ Fetching associations 224 ■ Using
aliases with joins 226 ■ Using implicit joins 228 ■ Theta-style
joins 229 ■ Comparing identifiers 230

7.4 Writing report queries 231
Projection 232 ■ Using aggregation 234 ■ Grouping 234
Restricting groups with having 236 ■ Improving performance
with report queries 236 ■ Obtaining DataSets 237

7.5 Advanced query techniques 238
Dynamic queries 238 ■ Collection filters 240 ■ Subqueries 242

7.6 Native SQL 243
Using the ISQLQuery API 244 ■ Named SQL queries 246
Customizing create, retrieve, update, and delete commands 248

7.7 Optimizing object retrieval 249
Solving the n+1 selects problem 249 ■ Using Enumerable()
queries 252 ■ Caching queries 253 ■ Using profilers and
NHibernate Query Analyzer 255

7.8 Summary 255

PART 3 NHIBERNATE IN THE REAL WORLD 257

8 Developing NHibernate applications 259
8.1 Inside the layers of an NHibernate application 260

Using patterns and methodologies 261 ■ Building and testing the
layers 263 ■ The domain model 263 ■ The business layer 266
The persistence layer 268 ■ The presentation layer 269

8.2 Solving issues related to .NET features 270
Working with web applications 271 ■ .NET remoting 271

CONTENTSxiv
8.3 Achieving goals and solving problems 272
Design goals applied to an NHibernate application 272
Identifying and solving problems 274 ■ Use the right tool for
the right job 276

8.4 Integrating services: the case of audit logging 277
Doing it the hard way 278 ■ Doing it the NHibernate
way 278 ■ Other ways of integrating services 283

8.5 Summary 284

9 Writing real-world domain models 286
9.1 Development processes and tools 287

Top down: generating the mapping and the database from
entities 288 ■ Middle out: generating entities from the
mapping 292 ■ Bottom up: generating the mapping and the
entities from the database 293 ■ Automatic database schema
maintenance 294

9.2 Legacy schemas 296
Mapping a table with a natural key 297 ■ Mapping a table
with a composite key 298 ■ Using a custom type to map legacy
columns 302 ■ Working with triggers 303

9.3 Understanding persistence ignorance 305
Abstracting persistence-related code 305 ■ Applying the Observer
pattern to an entity 307

9.4 Implementing the business logic 309
Business logic in the business layer 310 ■ Business logic in the
domain model 310 ■ Rules that aren’t business rules 312

9.5 Data-binding entities 312
Implementing manual data binding 313 ■ Using data-bound
controls 314 ■ Data binding using NHibernate 315 ■ Data
binding using ObjectViews 315

9.6 Filling a DataSet with entities’ data 316
Converting an entity to a DataSet 316 ■ Using NHibernate to assist
with conversion 317

9.7 Summary 317

10 Architectural patterns for persistence 319
10.1 Designing the persistence layer 320

Implementing a simple persistence layer 321 ■ Implementing a
generic persistence layer 326

CONTENTS xv
10.2 Implementing conversations 335
Approving a new auction 336 ■ Loading objects on each
request 337 ■ Using detached persistent objects 338 ■ Using the
session-per-conversation pattern 340 ■ Choosing an approach to
conversations 344

10.3 Using NHibernate in an Enterprise
Services application 345

Rethinking DTOs 345 ■ Enabling distributed transactions for
NHibernateHelper 346

10.4 Summary 348

appendix A SQL fundamentals 349
appendix B Going forward 352

index 355

foreword
Somewhere in the middle of 2004, I decided that I needed to take a look at additional
ways to deal with persistence, beyond store procedures and code generation using
Code Smith. At the time, I was mystified by the all the noise around ORM, business
objects, and domain-driven design. I had data sets and stored procedures, and I had
code generation to make working with them a bit easier, and the world was good. But
as I began to deal with more complex applications and attempted to learn from the col-
lective knowledge in the community, I began to see the problems with this approach.

 Eventually, I understood the significant problem with my previous method of work-
ing with data: I was building procedural applications, where the data was king and the
application behavior was, at best, a distant second. This approach doesn’t scale well
with the complexity of the applications we need to build. Indeed, this programmatic
approach has been largely superseded by object-oriented approaches. I see no reason
that this shouldn’t apply to dealing with data as well.

 I can no longer recall what made me decide to focus on NHibernate—it was proba-
bly an enthusiastic blog post, come to think of it. But whatever the reason, I made that
choice. Four years later, I have yet to regret this decision, and I am proud to state that
exactly 100 percent of my projects since then have used NHibernate for persistence.
That decision has paid off in many ways.

 Two occasions come to mind in particular. The first was a very … tense meeting
with a client, where the client DBA was furious about the need to support SQL Server.
That was the client’s requirement, but the DBA saw it as an encroachment on his terri-
tory, and he didn’t like it one bit. In his eyes, DB2 on AS/400 was what the client had
xvii

FOREWORD xviii
used for the last eon or so, and it should be what they used for the next eon or so. Dur-
ing that meeting, I pulled out my laptop, found the ADO.NET provider for DB2, and
configured the application to run against it. I asked the DBA for the credentials of the
test database and had the application running against it within 45 minutes. We ended
up going for production on SQL Server, but that was the client’s choice, not an imple-
mentation imperative.

 On the second occasion, we had to build a fairly complex multi-tenant HR applica-
tion on top of a legacy database that was imported from a mainframe and was enough
to make a person cry. The table names were numeric (of course, table 200 is the
employees table) and were different from one tenant to the next, and the database
model was a direct copy of the flat files used in batch processing on the mainframe.
Trying to build an application on top of that (and it couldn’t be changed) would have
been challenging, to say the least. We were able to build a domain model that was
mostly free of all the nonsense in the DB layer and map from the DB to the domain
model for each tenant. I wouldn’t call it simple by any means, but we were able to
encapsulate the complexity into a set of mapping files that were maintained by the sys-
tem integrators (who were the only people who understood what value went where).

 In both cases, I managed to get tremendous value out of NHibernate. In the first
case, it provided a good reputation and the ability to remove hurdles in working with
the client; in the second case, we made the problem simpler by an order of magnitude
if not more. The team worked mostly on the UI and the business problems, not on
solving persistence issues.

 I’ve been using NHibernate since version 0.4 or 0.5, and I have watched (and had
the honor of taking part in) how it has grown from a simple port of Hibernate on Java
to have a personality, community, and presence of its own. NHibernate 1.0 gave us par-
ity with Hibernate 2.1, with support for common scenarios, but it was still mostly a
port of the Java version. Starting with 1.2, we’ve seen more and more work being done
not only to make NHibernate more friendly to the .Net ecosystem, but also to add fea-
tures that are unique for NHibernate.

 NHibernate 1.0 was a good ORM for the time, looking back at it, but it seems bare-
bones compared to the options that we have now with 1.2 and 2.0.

 NHibernate 1.2 added support for generics, stored procedures, multiqueries, write
batching, and much more. NHibernate 2.0 is focused on parity with Hibernate 3.2, with
events and listeners, stateless sessions, joined and unioned classes, detached queries,
and much more. On the horizon is a Linq provider for NHibernate, which is being used
in production by several projects and will likely be released as part of NHibernate 2.1.

 NHibernate is also able to benefit from the ecosystem that grew around Hiber-
nate, and ports of Hibernate’s satellite projects exist for NHibernate. I’ll mention
NHibernate Search, which lets you integrate your entities with the Lucene.NET
search engine; and NHibernate Validator, which gives you a powerful validation
framework. NHibernate Contrib contains more examples. But the extensions avail-
able for NHibernate go beyond ports of Java projects. Rhino Security is a project that

FOREWORD xix
gives you a complete business-level security package on top of the NHibernate
domain model, and it uses NHibernate itself to do that. Several projects provide
mapping by convention to NHibernate, and a big community of users are sharing
knowledge and issues on a daily basis.

 This rich ecosystem didn’t happen by accident, it happened because NHibernate is
a flexible and adaptable framework; and when you come to understand the way it
works and how to utilize its strengths, it will bring significant benefits to your projects.
But being flexible and adaptable comes at a cost. Many people find that NHibernate
has a steep learning curve. I disagree; but as one of the committers for the project, I’m
probably not a good person to judge that particular aspect of NHibernate.

 When I started with NHibernate, I got Hibernate in Action (Christian Bauer and
Gavin King; Manning, 2004) and read it from cover to cover. My goal wasn’t to memo-
rize the API; my intent was to understand NHibernate—not just the API and how to use
it in simple scenarios, but also the design approach and how NHibernate handles
issues. To my joy, Hibernate in Action contained exactly that kind of information and
has been of tremendous value in understanding and using NHibernate.

 But Hibernate in Action is a Java book, which is why I was happy to hear (and read)
about this book. NHibernate in Action is not simply a reproduction of Hibernate in Action
with different naming conventions. This book has accomplished the task of translat-
ing the knowledge and of adapting and extending it. I consider this book to be essen-
tial for any developer who wants to be able to do more than the basics with
NHibernate. And it certainly helps that the book covers NHibernate-specific features,
which do not exist in the Hibernate version.

 OREN EINI, A.K.A. AYENDE RAHIEN

 NHIBERNATE COMMITTER

preface
For as long as I’ve been interested in software development, the most challenging and
fun aspect has always been problem solving: from the business level to more technical
levels, I’ve routinely spent countless hours thinking about the best solution to my cur-
rent problem.

 After discovering the .NET framework, I investigated how to write business applica-
tions. I was particularly worried about how I would load and store information in a
database. I tested the then-popular DataSet approach and the low-level ADO.NET API.
Although this API was easy to set up, it turned out to be inefficient and inflexible, and
it simply felt wrong. Anybody who has written countless plumbing code and SQL que-
ries would understand what I mean. Therefore, I did some research and discovered
object/relational mapping (ORM) tools. This was exactly what I was looking for: a
non-intrusive, object-oriented persistence approach supporting relational databases. I
chose NHibernate after testing numerous alternatives because it fitted that description
the best.

 I remember downloading and testing NHibernate 0.4. It was surprisingly stable and
provided the basic features I needed. More than that, it came with a wonderful com-
munity of open source developers. Being able to share my thoughts and having devel-
opers willing to help each other was one of my best learning experiences. I eventually
shipped my first commercial application using NHibernate 0.7. I’ve used it in count-
less other projects, and I think I’ll continue to use it in the years to come.

 When Manning Publications approached Tobin and me about writing a book on
NHibernate, we already had an interest in writing tutorials and helping people on the
xxi

PREFACExxii
NHibernate forum. Nonetheless, writing a book was an intimidating challenge! We
learned to write in a simple and readable way for the benefit of the reader. It turned
out to be an experience that we recommend anyone try at least once.

 Although Java developers have used ORM and written about it for years, this tech-
nology is still quite obscure to .NET developers. This book explains not only how to use
and extend NHibernate but also the theory behind it. We hope that this book will help
enlighten you regarding an indispensable technology that’s not so simple to learn.

 PIERRE HENRI KUATE

acknowledgments
We’d like to first express our thanks to all the core developers, contributors, and other
community members who have helped make NHibernate a first-class open source
tool. We’d also like to extend our thanks to those who have made the original Java
Hibernate a success. Our thanks to Jim Bolla, Mike Doerfler, Paul Hatcher, Sergey
Koshcheyev, Demetris Manikas, Fabio Maulo, Donald Mull, Bill Pierce, Dario Quin-
tana, Ayende Rahien, Peter Smulovics, Michael Third, Kailuo Wang, Kevin Williams,
and all the other contributors to NHibernate.

 As with any book, this one has required huge quantities of time, effort, and patience.
We’d like to thank the Manning Publications team for their incredible expertise and
know-how. They’ve continually endeavored to make the best choices possible for the
book and helped bring out the best from its authors. In particular, we’d like to thank
publisher Marjan Bace, acquisitions editor Mike Stephens, as well as Tiffany Taylor,
Katie Tennant, and Megan Yockey for their invaluable expertise, guidance, and feed-
back. A special thanks goes to our development editors, Frank Blackwell, Jackie Carter,
and Cynthia Kane, who patiently initiated us in the art of book writing.

 Our technical proofreaders gave their expert advice on the content of the book as
we prepared it for publication. Many thanks to Ayende Rahien for reviewing the man-
uscript and writing a brilliant foreword. Also, thanks to Mark Monster for the ques-
tions, amendments, and suggestions he made to the final version of the manuscript.

 The following technical reviewers took time out of their busy schedules to read the
manuscript at various stages of development and offered their invaluable feedback,
making this a much better book: Sergey Koshcheyev, John Tobler, Dan Hounshell,
xxiii

ACKNOWLEDGMENTSxxiv
Alessandro Gallo, Robi Sen, Paul Wilson, Pete Helgren, Oren Eini, Doug Warren, Jim
Geurts, Riccardo Audano, and Armand du Plessis.

 Before this book went into print, many people purchased the PDF version of the
chapters as they were being written through the Manning Early Access Program
(MEAP). We’d like to thank those readers for their comments, support, and suggestions
throughout the project, especially Adam Cooper, Darren Maidlow, Morten Mertner,
Magnus Salgo, Benjamin VanEvery, Jan Van Ryswyck, Fabio Maulo, Paul Anderson,
Damon Wilder Carr, Shane Courtrille, Jim Beveridge, Daren Fox, David Gadd, Jason
Whitehorn, Gary Murchison, Muhammad Shehabeddeen, and Thomas Koch.

PIERRE HENRI KUATÉ would like to thank his family for always supporting him, and his
friends at the Polelo Research Lab for their encouragement all along the way.

TOBIN HARRIS would like to thank his girlfriend, Georgina Reall, for her support,
encouragement, and patience throughout the project! He would also like to thank his
sister, Marnie, for her help and endless enthusiasm.

about this book
The NHibernate project was started back in 2003 by Paul Hatcher, and with the tre-
mendous work done by Mike Doerfler and Sergei Koshcheyev, it has steadily become a
mature product, popular with thousands of .NET developers.

 NHibernate was originally a port of the incredibly popular Java Hibernate project,
and object/relational mapping has been very popular with the Java crowd for many years.

 A consequence of this popularity is that Java developers have access to a whole
heap of books about Hibernate. In fact, the last time I counted I found 15 books dedi-
cated purely to this single tool. New books on Hibernate and related technologies are
still appearing regularly.

 Until now, .NET developers have had no such luxury for learning NHibernate. This
book aims to remedy that problem—we finally have our “manual” written for .NET
developers and focusing solely on NHibernate. NHibernate in Action is based on the
best-selling Hibernate in Action, which is considered to be the de facto manual for Java
Hibernate. The book is much more than a translation; in fact, much work has gone
into making it appeal to the .NET developer while also accommodating API changes,
code differences, new features, and the like.

 We hope that the arrival of this book is considered good timing. The world of .NET
is finally getting excited about object/relational mapping, and we hope this book will
help you discover, learn, and enjoy one of the most mature, powerful ORM frame-
works available.

Who should read this book

This book is written for developers who work with Microsoft .NET. Both developers
and architects should be able to draw great value from this book, regardless of
xxv

ABOUT THIS BOOKxxvi
whether they’re new to NHibernate and ORM or they’ve already gained some experi-
ence with it.

 For those new to NHibernate, this book assumes no prior knowledge. We also don’t
expect that you’ve worked with any object/relational mapping framework before. The
idea is that that you can take the knowledge in this book and start building NHiber-
nate solutions with it.

 We also anticipate that many reading this book might have used NHibernate on a
few projects already, either on its own or as part of another library such as Castle
Active Record or Spring.NET. This book will help you if you want to learn a little more
about what’s going on behind the scenes. It will also help you leverage the great fea-
tures of NHibernate and understand how to take full advantage of them.

 We’ve done our best to give as much background detail as possible on both the
common and the not-so-common usages of NHibernate. We’ve covered many topics
that are barely mentioned in forums and blogs, such as the persistence lifecycle and
some of the more exotic mapping capabilities.

 Regardless of whether you’re new to NHibernate or a seasoned user, we hope this
book will teach you new things and increase your enjoyment and success with the tool.

Roadmap

Chapter 1 sets the scene, explaining what persistence is and how it fits into business
applications. We take a glimpse at NHibernate, comparing it to other popular
approaches such as LINQ to SQL and DataSets. You’ll then learn about the fundamen-
tal problems posed in object/relational mapping and how NHibernate tackles them.

 Chapter 2 puts some code under your nose! Our brief tour takes you from install-
ing NHibernate to building and running a simple application. We then go on to
explore the main facilities available in NHibernate, including the APIs for querying,
transactions, and customization. We round off with both basic and advanced configu-
ration techniques and show how you can use logging to get a deeper insight into how
NHibernate operates behind the scenes.

 Chapter 3 will bring you up to speed with the bulk of NHibernate’s capabilities. We
take a more sophisticated problem—the CaveatEmptor application—and guide you
through modeling your domain model, along with mapping it using various types of
associations. You’ll learn how NHibernate allows mapping with XML and the .NET
attributes. We also explain some smarter capabilities, such as flexible property map-
pings and automatic naming conventions. The chapter also explains the importance
of identity in ORM, before building on previous knowledge by explaining more about
mapping inheritance and associations.

 Chapter 4 gives further insight into some important concepts: entity lifecycle, per-
sistent states, and equality. We look at how this knowledge can be leveraged by NHiber-
nate’s APIs. We also look at working with entire object graphs, discussing cascading
persistence, batching, lazy fetching, and eager fetching.

 Chapter 5 delves into using NHibernate to get tight control over database transac-
tions. We then discuss long-running business transactions and demonstrate how to

ABOUT THIS BOOK xxvii
achieve automatic versioning and locking. Caching is core to NHibernate, and you’ll
learn a great deal here about the first- and second-level caches.

 Chapter 6 introduces the NHibernate type system and how to implement custom
user types. We move on to discuss components, value types, and working with the
more advanced associations, indicating some best practices when working with them.

 Chapter 7 focuses on efficiently querying NHibernate. We examine both HQL and
the ICriteria API, giving many code samples for each. You’ll see glorious detail for
parameter binding, named queries, polymorphic queries, and joins. We also look at
how you can run efficient report queries, use collection filters, and use plain SQL
rather than HQL. Finally, this chapter looks at solving common performance prob-
lems, discussing the n+1 selects problem and caching.

 Chapter 8 offers a look at patterns and practices around NHibernate. We give
example code for common practices such as layered applications and unit testing.
Also included are some helpful tips for finding bugs in your applications. We also give
an example implementation of adding additional services to NHibernate applications,
such as audit logging.

 Chapter 9 starts by discussing development processes and available tools, explain-
ing the various starting points for an NHibernate application. We also look at code
generation and automatic schema maintenance, for evolving domain models and
databases in tandem. We then look at working with legacy databases and explain some
tried and tested tricks for dealing with things like composite keys and triggers.

 Chapter 10 gives more real-world knowledge. We look at refactoring a sample
application into layers, with a well-defined persistence layer and a smart domain
model. This chapter also introduces the DAO pattern with generics, and a useful NHi-
bernate Helper class. Finally, we look at session management for web applications,
implementing long-running business conversations, and demonstrating how to imple-
ment distributed transactions.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets B link to explanations that follow
the listing.

 The complete example code for the book can be downloaded from the Manning
web site at www.manning.com/kuate or www.manning.com/NHibernateinAction.

Author Online

Purchase of NHibernate in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the lead author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/NHibernatein-
Action or www.manning.com/kuate. This page provides information on how to get on
the forum once you’re registered, what kind of help is available, and the rules of conduct
on the forum.

www.manning.com/kuate
www.manning.com/NHibernateinAction
www.manning.com/NHibernateinAction
www.manning.com/NHibernateinAction
www.manning.com/kuate

ABOUT THIS BOOKxxviii
 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

PIERRE HENRI KUATÉ is one of the main developers on the NHibernate project team,
author of the NHibernate.Mapping.Attributes library, and a major contributor to the
NHibernate forum. He was responsible for managing the NHibernate documentation,
website, and forum on the Hibernate.org site. He started using NHibernate more than
four years ago in commercial development.

TOBIN HARRIS has worked with NHibernate since it was in early beta. He’s passionate
about tools and practices that help build quality software at high speeds. As an inde-
pendent consultant and entrepreneur, Tobin works with companies across the globe
in various sectors including banking, personal finance, healthcare, software compo-
nents, and new media. Tobin obtained his degree in software engineering at Leeds
Metropolitan University and continues to work and live in Leeds, UK.

CHRISTIAN BAUER is a member of the Hibernate developer team and a trainer, consul-
tant, and product manager for Hibernate, EJB 3.0, and JBoss Seam at JBoss. He is the
lead author of Manning’s Hibernate in Action and Java Persistence with Hibernate.

GAVIN KING is a lead developer at JBoss, the creator of Hibernate, and a member of the
EJB 3.0 (JSR 220) expert group. He also leads Web Beans JSR 299, a standardization
effort involving Hibernate concepts, JSF, and EJB 3.0, and is coauthor with Christian of
the two books mentioned above.

About the title

By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learn-
ing to become permanent it must pass through stages of exploration, play, and, inter-
estingly, retelling of what is being learned. People understand and remember new
things, which is to say they master them, only after actively exploring them. Humans
learn in action. An essential part of an In Action guide is that it’s example-driven. It
encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them

ABOUT THIS BOOK xxix
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.

About the cover illustration

The figure on the cover of NHibernate in Action is taken from the 1805 edition of Syl-
vain Maréchal’s four-volume compendium of regional dress customs. This book was
first published in Paris in 1788, one year before the French Revolution. Each illustra-
tion is finely drawn and colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally
apart the world’s towns and regions were just 200 years ago. Isolated from each other,
people spoke different dialects and languages. In the streets or the countryside, they
were easy to place—sometimes with an error of no more than a dozen miles—just by
their dress.

 Dress codes have changed everywhere with time and the diversity by region, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Part 1

Discovering
 ORM with NHibernate

The first part of the book provides insights into what ORM is, why it exists,
and how it fits in a typical .NET application. We then introduce NHibernate,
using a clear and simple example to help you understand how the various pieces
of an NHibernate application fit together.

Object/relational
 persistence in .NET
Software development is an ever-changing discipline in which new techniques and
technologies are constantly emerging. As software developers, we have an enor-
mous array of tools and practices available, and picking the right ones can often
make or break a project. One choice that is thought to be particularly critical is
how to manage persistent data—or, more simply, how to load and save data.

 Almost endless options are available. You can store data in binary or text files on
a disk. You can choose a format such as CSV, XML, JSON, YAML, or SOAP, or invent
your own format. Alternatively, you can send data over the network to another

This chapter covers
■ .NET persistence and relational databases
■ Layering .NET applications
■ Approaches to implementing persistence in .NET
■ How NHibernate solves persistence of objects in

relational databases
■ Advanced persistence features
3

4 CHAPTER 1 Object/relational persistence in .NET
application or service, such as a relational database, an Active Directory server, or a
message queue. You may even need to store data in several places, or combine all
these options within a single application.

 As you may begin to realize, managing persistent data is a thorny topic. Relational
databases are extremely popular, but many choices, questions, and options still con-
front you in your daily work. For example, should you use DataSets, or are DataRead-
ers more suitable? Should you use stored procedures? Should you hand-code your
SQL or let your tools dynamically generate it? Should you strongly type your DataSets?
Should you build a hand-coded domain model containing classes? If so, how do you
load data to and save it from the database? Do you use code generation? The list of
questions continues.

 This topic isn’t restricted to .NET. The entire development community has been
debating this topic, often fiercely, for many years.

 But one approach has gained widespread popularity: object/relational mapping
(ORM). Over the years, many libraries and tools have emerged to help developers
implement ORM in their applications. One of these is NHibernate—a sophisticated
and mature object/relational mapping tool for .NET.

 NHibernate is a .NET port of the popular Java Hibernate library. NHibernate aims
to be a complete solution to the problem of managing persistent data when working
with relational databases and domain model classes. It strives to undertake the hard
work of mediating between the application and the database, leaving you free to con-
centrate on the business problem at hand. This book covers both basic and advanced
NHibernate usage. It also recommends best practices for developing new applications
using NHibernate.

 Before we can get started with NHibernate, it will be useful for you to understand
what persistence is and the various ways it can be implemented using the .NET frame-
work. This chapter will explain why tools like NHibernate are needed.

First, we define the notion of persistence in the context of .NET applications. We then
demonstrate how a classic .NET application is implemented, using the standard persis-
tence tools available in the .NET framework. You’ll discover some common difficulties
encountered when using relational databases with object-oriented frameworks such as
.NET, and how popular persistence approaches try to solve these problems. Collectively,

Do I need to read all this background information?
No. If you want to try NHibernate right away, skip to chapter 2, where you’ll jump in
and start coding a (small) NHibernate application. You’ll be able to understand chap-
ter 2 without reading chapter 1, but we recommend that you read this chapter if you’re
new to persistence in .NET. That way, you’ll understand the advantages of NHibernate
and know when to use it. You’ll also learn about important concepts like unit of work.
If you’re interested by this discussion, you may as well continue with chapter 1, get
a broad idea of persistence in .NET, and then move on.

5What is persistence?
these issues are referred to as the paradigm mismatch between object-oriented and data-
base design. We then go on to introduce the approach taken by NHibernate and discuss
many of its advantages. Following that, we dig into some complex persistence chal-
lenges that make a tool like NHibernate essential. Finally, we define ORM and discuss
why you should use it. By the end of this chapter, you should have a clear idea of the
great benefits you can reap by using NHibernate.

1.1 What is persistence?
Persistence is a fundamental concern in application development. If you have some
experience in software development, you’ve already dealt with it. Almost all applica-
tions require persistent data. You use persistence to allow data to be stored even when
the programs that use it aren’t running.

 To illustrate, let’s say you want to create an application that lets users store their
company telephone numbers and contact details, and retrieve them whenever
needed. Unless you want the user to leave the program running all the time, you’ll
soon realize that your application needs to somehow save the contacts somewhere.
You’re faced with a persistence decision: you need to work out which persistence mecha-
nism you want to use. You have the option of persisting your data in many places, the
simplest being a text file. More often than not, you may choose a relational database,
because such databases are widely understood and offer great features for reliably
storing and retrieving data.

1.1.1 Relational databases

You’ve probably already worked with a relational database such as Microsoft SQL
Server, MySQL or Oracle. If you haven’t, see appendix A. Most developers use rela-
tional databases every day; they have widespread acceptance and are considered a
robust and mature solution to modern data-management challenges.

 A relational database management system (RDBMS) isn’t specific to .NET, and a
relational database isn’t necessarily specific to any one application. You can have sev-
eral applications accessing a single database, some written in .NET, some written in
Java or Ruby, and so on. Relational technology provides a way of sharing data between
many different applications. Even different components within a single application
can independently access a relational database (a reporting engine and a logging
component, for example).

 Relational technology is a common denominator of many unrelated systems and
technology platforms. The relational data model is often the common enterprise-wide
representation of business objects: a business needs to store information about various
things such as customers, accounts, and products (the business objects), and the rela-
tional database is usually the chosen central place where they’re defined and stored.
This makes the relational database an important piece in the IT landscape.

 RDBMSs have SQL-based application programming interfaces (APIs). So today’s
relational database products are called SQL database management systems or, when we’re
talking about particular systems, SQL databases.

6 CHAPTER 1 Object/relational persistence in .NET
1.1.2 Understanding SQL

As with any .NET database development, a solid understanding of relational databases
and SQL is a prerequisite when you’re using NHibernate. You’ll use SQL to tune the per-
formance of your NHibernate application. NHibernate automates many repetitive cod-
ing tasks, but your knowledge of persistence technology must extend beyond
NHibernate if you want take advantage of the full power of modern SQL databases.
Remember that the underlying goal is robust, efficient management of persistent data.

 If you feel you may need to improve your SQL skills, then pick up a copy of the
excellent books SQL Tuning by Dan Tow [Tow 2003] and SQL Cookbook by Anthony
Molinaro [Mol 2005]. Joe Celko has also written some excellent books on advanced
SQL techniques. For a more theoretical background, consider reading An Introduction
to Database Systems [Date 2004].

1.1.3 Using SQL in .NET applications

.NET offers many tools and choices when it comes to making applications work with
SQL databases. You might lean on the Visual Studio IDE, taking advantage of its drag-
and-drop capabilities: in a series of mouse clicks, you can create database connec-
tions, execute queries, and display editable data onscreen. We think this approach is
great for simple applications, but the approach doesn’t scale well for larger, more
complex applications.

 Alternatively, you can use SqlCommand objects and manually write and execute
SQL to build DataSets. Doing so can quickly become tedious; you want to work at a
slightly higher level of abstraction so you can focus on solving business problems
rather than worrying about data access concerns. If you’re interested in learning more
about the wide range of tried and tested approaches to data access, then consider
reading Martin Fowler’s Patterns of Enterprise Application Architecture [Fowler 2003],
which explains many techniques in depth.

 Of all the options, the approach we take is to write classes—or business entities—that
can be loaded to and saved from the database. Unlike DataSets, these classes aren’t
designed to mirror the structure of a relational database (such as rows and columns).
Instead, they’re concerned with solving the business problem at hand. Together, such
classes typically represent the object-oriented domain model.

1.1.4 Persistence in object-oriented applications

In an object-oriented application, persistence allows an object to outlive the process
or application that created it. The state of the object may be stored to disk and an
object with the same state re-created at some point in the future.

 This application isn’t limited to single objects—entire graphs of interconnected
objects may be made persistent and later re-created. Most objects aren’t persistent; a
transient object is one that has a limited lifetime that is bounded by the life of the pro-
cess that instantiated the object. A simple example is a web control object, which exists
in memory for only a fraction of a second before it’s rendered to screen and flushed

7What is persistence?
from memory. Almost all .NET applications contain a mix of persistent and transient
objects, and it makes good sense to have a subsystem that manages the persistent ones.

 Modern relational databases provide a structured representation of persistent
data, enabling sorting, searching, and grouping of data. Database management sys-
tems are responsible for managing things like concurrency and data integrity; they’re
responsible for sharing data between multiple users and multiple applications. A data-
base management system also provides data-level security. When we discuss persis-
tence in this book, we’re thinking of all these things:

■ Storage, organization, and retrieval of structured data
■ Concurrency and data integrity
■ Data sharing

In particular, we’re thinking of these issues in the context of an object-oriented appli-
cation that uses a domain model. An application with a domain model doesn’t work
directly with the tabular representation of the business entities (using DataSets); the
application has its own, object-oriented model of the business entities. If a database
has ITEM and BID tables, the .NET application defines Item and Bid classes rather
than uses DataTables for them.

 Then, instead of directly working with the rows and columns of a DataTable, the
business logic interacts with this object-oriented domain model and its runtime realiza-
tion as a graph of interconnected objects. The business logic is never executed in the
database (as a SQL stored procedure); it’s implemented in .NET. This allows business
logic to use sophisticated object-oriented concepts such as inheritance and polymor-
phism. For example, you could use well-known design patterns such as Strategy, Medi-
ator, and Composite [GOF 1995], all of which depend on polymorphic method calls.

 Now, a caveat: Not all .NET applications are designed this way, nor should they be.
Simple applications may be much better off without a domain model. SQL and
ADO.NET are serviceable for dealing with pure tabular data, and the DataSet makes
CRUD operations even easier. Working with a tabular representation of persistent data
is straightforward and well understood.

 But in the case of applications with nontrivial business logic, the domain model
helps to improve code reuse and maintainability significantly. We focus on applica-
tions with a domain model in this book, because NHibernate and ORM in general are
most relevant to this kind of application.

 It will be useful to understand how this domain model fits into the bigger picture of
a software system. To explain this, we take a step back and look at the layered architecture.

1.1.5 Persistence and the layered architecture

Many, if not most, systems today are designed with a layered architecture, and NHiber-
nate works well with that design. What is a layered architecture?

 A layered architecture splits a system into several groups, where each group con-
tains code addressing a particular problem area. These groups are called layers. For
example, a user interface layer (also called the presentation layer) might contain all

8 CHAPTER 1 Object/relational persistence in .NET
the application code for building web pages and processing user input. One major
benefit of the layering approach is that you can often make changes to one layer with-
out significant disruption to the other layers, thus making systems less fragile and
more maintainable.

 The practice of layering follows some basic rules:

■ Layers communicate top to bottom. A
layer is dependent only on the layer
directly below it.

■ Each layer is unaware of any other lay-
ers except the layer just below it.

Business applications use a popular, proven,
high-level application architecture that com-
prises three layers: the presentation layer, the
business layer, and the persistence layer. See
figure 1.1.

 Let’s take a closer look at the layers and
elements in the diagram:

■ Presentation layer —The user interface logic is topmost. In a web application, this
layer contains the code responsible for drawing pages or screens, collecting
user input, and controlling navigation.

■ Business layer —The exact form of this layer varies widely between applications.
But it’s generally agreed that the business layer is responsible for implementing
any business rules or system requirements that users would understand as part
of the problem domain. In some systems, this layer has its own internal repre-
sentation of the business domain entities. In others, it reuses the model defined
by the persistence layer. We revisit this issue in chapter 3.

■ Persistence layer —The persistence layer is a group of classes and components
responsible for saving application data to and retrieving it from one or more
data stores. This layer defines a mapping between the business domain entities
and the database. It may not surprise you to hear that NHibernate would be
used primarily in this layer.

■ Database —The database exists outside the .NET application. It’s the actual, per-
sistent representation of the system state. If a SQL database is used, the database
includes the relational schema and possibly stored procedures.

■ Helper/utility classes —Every application has a set of infrastructural helper or util-
ity classes that support the other layers: for example, UI widgets, messaging
classes, Exception classes, and logging utilities. These infrastructural elements
aren’t considered to be layers, because they don’t obey the rules for interlayer
dependency in a layered architecture.

Presentation Layer

Business Layer

Persistence Layer

Utility
and

Helper
Classes

Database

Figure 1.1 Layered architecture highlighting
the persistence layer

9Approaches to persistence in .NET
Remember that layers are particularly useful for breaking down large and complex
applications, and are often overkill for the extremely simple .NET applications. For such
simple programs, you may choose to put all your code in one place. Instead of neatly sep-
arating business rules and database-access functions into separate layers, you can put
them all in your web/Windows code-behind files. Tools like Visual Studio .NET make it
easy and painless to build this kind of application. But be aware that this approach can
quickly lead to a problematic code base; as the application grows, you have to add more
and more code to each form or page, and things become increasingly difficult to work
with. Moreover, changes made to the database may easily break your application, and
finding and fixing the affected parts can be time consuming and painful!

1.2 Approaches to persistence in .NET
We’ve discussed how, in any sizeable application, you need a persistence layer to han-
dle loading and saving data. Many approaches are available when you’re building this
persistence layer, and each has advantages and disadvantages. Some popular choices
are as follow:

■ Hand coding
■ DataSets
■ LINQ-to-SQL
■ NHibernate (or similar)
■ ADO.NET Entity Framework

Despite the fact that we highly recommend NHibernate, it’s always wise to consider
the alternatives. As you’ll soon learn, building applications with NHibernate is
straightforward, but that doesn’t mean it’s perfect for every project. In the following
sections, we examine and compare these strategies in detail, discussing the implica-
tions for database access and the user interface.

1.2.1 Choice of persistence layer

In your applications, you’ll often want to load, manipulate, and save database items.
Regardless of which persistence approach you use, at some point ADO.NET objects
must be created and SQL commands must be executed. It would be tedious and

Should all applications have three layers?
Although a three-layers architecture is common and advantageous in many cases, not
all .NET applications are designed like that, nor should they be. Simple applications
may be better off without complex objects. SQL and the ADO.NET API are serviceable
for dealing with pure tabular data, and the ADO.NET DataSet makes basic operations
even easier. Working with a tabular representation of persistent data is straightfor-
ward and well understood.

10 CHAPTER 1 Object/relational persistence in .NET
unproductive to write all this SQL code each time you have to manipulate data, so you
can use a persistence layer to take care of these low-level steps.

 The persistence layer is the set of classes and utilities used to make life easier when
it comes to saving and loading data. ADO.NET lets you execute SQL commands that per-
form the persistence, but the complexity of this process requires that you wrap these
commands behind components that understand how your entities should be persisted.
These components can also hide the specifics of the database, making your application
less coupled to the database and easier to maintain. For example, when you use a SQL
identifier containing spaces or reserved keywords, you must delimit this identifier.
Databases like SQL Server use brackets for that, whereas MySQL uses back-ticks. It’s pos-
sible to hide this detail and let the persistence layer select the right delimiter.

 Based on the approach you use, the internals of the persistence layer differ widely.
HAND-CODED PERSISTENCE LAYER

Hand-coding a persistence layer can involve a lot of work; it’s common to first build a
generic set of functions to handle database connections, execution of SQL commands,
and so on. Then, on top of this sublayer, you have to build another set of functions that
save, load, and find your business entities. Things get much more involved if you need
to introduce caching, business-rule enforcement, or handling of entity relationships.

 Hand-coding your persistence layer gives you the greatest degree of flexibility and
control; you have ultimate design freedom and can easily exploit specialized database
features. But it can be a huge undertaking and is often tedious and repetitive work,
even when you use code generation.
DATASET-BASED PERSISTENCE LAYER

Visual Studio lets you effortlessly generate your own persistence layer, which you can
then extend with new functionality with few clicks. The classes generated by Visual
Studio know how to access the database and can be used to load and save the entities
contained in the DataSet.

 Again, a small amount of work is required to get started. You have to resort to
hand-coding when you need more control, which is usually inevitable (as described in
section 1.3).
NHIBERNATE PERSISTENCE LAYER

NHibernate provides all the features required to quickly build an advanced persis-
tence layer in code. It’s capable of loading and saving entire graphs of interconnected
objects while maintaining the relationships between them.

 In the context of an auction application (such as eBay), NHibernate lets you easily
save an Item and its Bids by implementing a method like this:

public void Save(Item item) {
 OpenNHibernateSession();
 session.Save(item);
 CloseNHibernateSession();
}

Here, session is an object provided by NHibernate. Don’t worry about understanding
the code yet. For now, we want you to see how simple the persistence layer is with

11Approaches to persistence in .NET
NHibernate. You’ll start using NHibernate in chapter 2, where you’ll discover that it’s
straightforward to execute persistence operations. All you need to do is write your
entities and explain to NHibernate how to persist them. Before moving on to a deeper
discussion of NHibernate, let’s take a quick look at the newest generation of persis-
tence technologies introduced by Microsoft.
LINQ TO SQL–BASED PERSISTENCE LAYER

Language INtegrated Query (LINQ) was introduced in 2007 by Microsoft. It allows for
query and set operations, similar to what SQL statements offer for databases directly
within .NET languages like C# and Visual Basic through a set of extensions to these
languages. LINQ’s ambition is to make queries a natural part of the programming lan-
guage. LINQ to SQL provides language-integrated data access by using LINQ’s exten-
sion mechanism. It builds on ADO.NET to map tables and rows to classes and objects.

 LINQ to SQL uses mapping information encoded in .NET custom attributes or con-
tained in an XML document. This information is used to automatically handle the per-
sistence of objects in relational databases. A table can be mapped to a class, the table’s
columns can be mapped to properties of the class, and relationships between tables
can be represented by properties. LINQ to SQL automatically keeps track of changes
to objects and updates the database accordingly through dynamic SQL queries or
stored procedures. Consequently, when you use LINQ to SQL, you don’t have to pro-
vide the SQL queries yourself most of the time.

 LINQ to SQL has some significant limitations when compared to NHibernate. For
example, its mapping of classes to tables is strictly one-to-one, and it can’t map base
class properties to table columns. Although you can create a custom provider in LINQ,
LINQ to SQL is a SQL Server–specific solution.
ADO.NET ENTITY FRAMEWORK

The Microsoft ADO.NET Entity Framework is a new approach to persistence, available
since .NET 3.5 SP1. At a high level, it proposes to provide a persistence solution similar
to NHibernate, but with the full commercial support and backing of Microsoft. This
promises to be an attractive option for developers who require a vendor-supported
solution. But at the time of this writing, the Entity Framework is early beta software,
and its feature set is incomplete.

 The ADO.NET Entity Framework 1.0 version supports multiple databases and more
complex mapping. But it won’t support true “object-first” development, where you
design and build, and then generate the database tables from that mapping, until ver-
sion 2—planned for late 2009 at the earliest. For situations requiring a robust ORM,
NHibernate still offers significant advantages.

1.2.2 Implementing the entities

Once you’ve chosen a persistence-layer approach, you can focus on building the busi-
ness objects, or entities, that the application will manipulate. These are classes repre-
senting the real-world elements that the application must manipulate. For an auction
application, User, Item, and Bid are common examples. We now discuss how to imple-
ment business entities using each of the three approaches.

12 CHAPTER 1 Object/relational persistence in .NET
HAND-CODED ENTITIES

Returning to the example of an auction application, consider the entities: User,
Item, and Bid. In addition to the data they contain, you expect relationships to exist
between them. For example, an Item has a collection of bids, and a Bid refers to an
Item; in C# classes, this might be expressed using a collection like item.Bids and a
property like bid.Item. The object-oriented view is different that the relational view:
instead of having primary and foreign keys, you have associations. Object-oriented
design also provides other powerful modeling concepts, such as inheritance
and polymorphism.

 Hand-coded entities are free from any constraints; they’re even free from the way
they’re persisted in the database. They can evolve (almost) independently and be
shared by different applications; this is an important advantage when you’re working
in a complex environment.

 But they’re difficult and tedious to code. Think about the manual work required
to support the persistence of entities inheriting from other entities. It’s common to
use code generation or base classes (like DataSet) to add features with a minimal
effort. These features may be related to the persistence, transfer, or presentation of
information. But without a helpful framework, these features can be time consuming
to implement.
ENTITIES IN A DATASET

A DataSet represents a collection of database tables, and in turn these tables contain
the data of the entities. A DataSet stores data about business objects in a fashion simi-
lar to a database. You can use a generated-typed DataSet to ease the manipulation of
data, and it’s also possible to insert business logic and rules.

 As long as you want to manipulate data, .NET and IDEs provide most features
required to work with a DataSet. But as soon as you think about business objects as
objects in the sense of object-oriented design, you can hardly be satisfied by a DataSet
(typed or not). After all, business objects represent real-world elements, and these ele-
ments have data and behavior. They may be linked by advanced relationships like
inheritance, but this isn’t possible with DataSets. This level of freedom in the design of
entities can be achieved only by hand coding them.
ENTITIES AND NHIBERNATE

NHibernate is non-intrusive. It’s common to use it with hand-coded (or generated)
entities. You must provide mapping information indicating how these entities should
be loaded and saved. Once this is done, NHibernate can take care of moving your
object-oriented entities to and from a relational database.

 There are many fundamental differences between objects and relational data. Try-
ing to use them together reveals the paradigm mismatch (also called the object/relational
impedance mismatch). We explore this mismatch in section 1.3. By the end of this chap-
ter, you’ll have a clear idea of the problems caused by the paradigm mismatch and
how NHibernate solves these problems.

13Approaches to persistence in .NET
ENTITIES AND LINQ TO SQL

The LINQ to SQL approach looks a lot like the NHibernate way of doing ORM. LINQ to
SQL uses POCO objects to represent your application data (the entities). The mapping
of those objects to database tables is described either in declarative attributes in code
or in an XML document. After the mapping and the classes are complete, the LINQ to
SQL framework takes care of generating SQL for database operations.

 Once the entities are implemented, you must think about how they will be pre-
sented to the end user.

1.2.3 Displaying entities in the user interface

Using NHibernate implies using entities, and using entities has consequences for the
way the user interface (UI) is written. For the end user, the UI is one of the most
important elements. Whether it’s a web application (using ASP.NET) or a Windows
application, it must satisfy the needs of the user. A deep discussion of implementing a
UI isn’t in the scope of this book; but the way the persistence layer is implemented has
a direct effect on the way the UI will be implemented.

 In this book, we refer to the UI as the presentation layer. .NET provides controls to
display information. The simplicity of this operation depends on how the information
is stored.

 It’s worth noting that we expect .NET entity data binding to change soon. Micro-
soft is beginning to actively push the use of entities in .NET applications as the com-
pany promotes the ADO.NET Entity Framework and LINQ to SQL. For this reason, we
won’t discuss those technologies in this section.
DATASET-BASED PRESENTATION LAYER

Microsoft has added support for data binding with DataSet in most .NET controls. It’s
easy to bind a DataSet to a control so that its information is displayed and any changes
(made by the user) reverberate in the DataSet.

 Using DataSets is probably the most productive way to implement a presentation
layer. You may lose some control over how information is presented, but it’s good
enough in most cases. The situation is more complicated with hand-coded entities.
PRESENTATION LAYER AND ENTITIES

Data-binding the hand-coded entities typically used in NHibernate applications can be
tricky. This is because entities can be implemented in so many different ways. A Data-
Set is always made of tables, columns, and rows; but a hand-coded entity—a class of
your own design—contains fields and methods with no standardized way to access and
display them. .NET allows us to data-bind controls to the public properties of any
object. This is good enough in simple cases. If you want more flexibility, you must do
some hand coding to get entity data into the UI and back again.

 Hand coding your own entity/UI bindings is still fairly simple. However, if you find
this tedious, then take a look at some of the open source projects designed to tackle
this problem for you. “ObjectViews” is one of many projects out there.

14 CHAPTER 1 Object/relational persistence in .NET
 Also, don’t forget that you’re free to fall back to DataSets when you’re dealing with
edge cases like complex reporting, where DataSets are much easier to manipulate. In
fact, at the time of writing, few reporting tools provide good support for entities, so
DataSets may be your best option. We discuss this issue in chapter 9.

 Using persistence-able information affects the way the UI is designed. Data should
be loaded when the UI opens and saved when the UI closes. NHibernate proposes
some patterns to deal with this process, as you’ll learn in chapter 8.

 Now all the layers are in place, and you can work on performing actions.

1.2.4 Implementing CRUD operations

When you’re working with persistent information, you’re concerned with persisting
and retrieving this information. Create, read, update, delete (CRUD) operations are
primitive operations executed even in the simplest application. Most of the time,
these operations are triggered by events raised in the presentation layer. For example,
the user may click a button to view an item. The persistence layer is used to load this
item, which is then bound to a form displaying its data.

 No matter which approach you use, these primitive operations are well understood
and easy to implement. Operations that are more complex are covered in the next
section.
HAND-CODED CRUD OPERATIONS

A hand-coded CRUD operation does exactly what you want because you write the SQL
command to execute—but it’s repetitive and annoying work. It’s possible to imple-
ment a framework that generates these SQL commands. Once you understand that
loading an entity implies executing a SELECT on its database row, you can automate
primitive CRUD operations. But much more work is required for complex queries and
manipulating interconnected entities.
CRUD OPERATIONS WITH DATASETS

You know that much of the persistence layer can be generated when using DataSets. This
persistence layer contains classes to execute CRUD operations. And Visual Studio 2005
and .NET 2.0 come with more powerful classes called table adapters.

 Not only do these classes support primitive CRUD operations, but they’re also
extensible. You can either add methods calling stored procedures or generate SQL
commands with few clicks. But if you want to implement anything more complex, you
must hand code it; you’ll see in the next section that some useful features aren’t easy
to implement, and the structure of a DataSet may make doing so even harder.
CRUD OPERATIONS USING NHIBERNATE

As soon as you give NHibernate your entities’ mapping information, you can execute a
CRUD operation with a single method call. This is a fundamental feature of an ORM
tool. Once it has all the information it needs, it can solve the object/relational imped-
ance mismatch at each operation.

 NHibernate is designed to efficiently execute CRUD operations. Experience and tests
have helped uncover many optimizations and best practices. For example, when you’re

15Why do we need NHibernate?
manipulating entities, you can achieve the best performance by delaying persistence to
the end of the transaction. At this point, you use a single connection to save all entities.
LINQ TO SQL CRUD OPERATIONS

On the surface, executing CRUD operations with LINQ to SQL is similar to using NHi-
bernate—you can load, save, update, and delete objects with simple method calls.
LINQ to SQL offers less fine tuning of your CRUD operations for each entity, which can
be a good thing or a bad thing depending on the complexity of your project.

 Now that we’ve covered all the basic persistence steps and operations, we explore
some advanced features that illustrate the advantages of NHibernate.

1.3 Why do we need NHibernate?
So far, we’ve talked about a simple application. In the real world, you rarely deal with
simple applications. An enterprise application has many entities with complex business
logic and design goals: productivity, maintainability, and performance are all essential.

 In this section, we walk through some features indispensable to implementing a
successful application. First, we give some examples illustrating the fundamental dif-
ferences between objects and relational database. You’ll also learn how NHibernate
helps create a bridge between these representations. Then, we turn to the persistence
layer to discover how NHibernate deals with complex and numerous entities. You’ll
learn the patterns and features it provides to achieve the best performance. Finally, we
cover complex queries; you’ll see that you can use NHibernate to write a powerful
search engine.

 Let’s start with the entities and their mapping to a relational database.

1.3.1 The paradigm mismatch

A database is relational, but we’re using object-oriented languages. There is no direct
way to persist an object as a database row. Persistence shouldn’t hinder your ability to
design entities that correctly represent what you’re manipulating.

 The paradigm mismatch (or object/relational impedance mismatch) refers to the funda-
mental incompatibilities that exist between the design of objects and relational data-
bases. Let’s look at some of the problems created by the paradigm mismatch.
THE PROBLEM OF GRANULARITY

Granularity refers to the relative size of the objects you’re working with. When we talk
about .NET objects and database tables, the granularity problem means persisting
objects that can have various kinds of granularity to tables and columns that are inher-
ently limited in granularity.

 Let’s take an example from the auction use case we mentioned in section 1.1.4.
Let’s say you want to add an address to a User object, not as a string but as another
object. How can you persist this user in a table? You can add an ADDRESS table, but it’s
generally not a good idea (for performance reasons). You can create a user-defined col-
umn type, but this option isn’t broadly supported and portable. Another option is to
merge the address information into the user, but this isn’t a good object-oriented
design and it isn’t reusable.

16 CHAPTER 1 Object/relational persistence in .NET
 It turns out that the granularity problem isn’t difficult to solve. We wouldn’t even
discuss it if it weren’t for the fact that it’s visible in so many approaches, including the
DataSet. We describe the solution to this problem in section 3.6.

 A much more difficult and interesting problem arises when we consider inheri-
tance, a common feature of object-oriented design.
THE PROBLEM OF INHERITANCE AND POLYMORPHISM

Object-oriented languages support the notion of inheritance, but relational databases
typically don’t. Let’s say that the auction application can have many kinds of items.
You could create subclasses like Furniture and Book, each with specific information.
How can you persist this hierarchy of entities in a relational database? A Bid can refer
to any subclass of Item. It should be possible to run polymorphic queries, such as retriev-
ing all bids on books. In section 3.8, we discuss how ORM solutions like NHibernate
solve the problem of persisting a class hierarchy to a database table or tables.
THE PROBLEM OF IDENTITY

The identity of a database row is commonly expressed as the primary key value. As
you’ll see in section 3.5, .NET object identity isn’t naturally equivalent to the primary key
value. With relational databases, it’s recommended that you use a surrogate key—a pri-
mary key column with no meaning to the user. But .NET objects have an intrinsic iden-
tity, which is based either on their memory location or on a user-defined convention
(by using the implementation of the Equals() method).

 Given this problem, how can you represent associations? Let’s look at that next.
PROBLEMS RELATING TO ASSOCIATIONS

In an object model, associations represent the relationships between objects. For
instance, a bid has a relationship with an item. This association is created using object
references. In the relational world, an association is represented by a foreign key col-
umn, with copies of key values in several tables. There are subtle differences between
the two representations.

 Object references are inherently directional: the association is from one object to the
other. If an association between objects should be navigable in both directions, you
must define the association twice, once in each of the associated classes.

 On the other hand, foreign-key associations aren’t by nature directional. Naviga-
tion has no meaning for a relational data model, because you can create arbitrary data
associations with table joins and projection. We discuss association mappings in detail
in chapters 3 and 6.

 If you think about the DataSet in all these problems, you’ll realize how rigid its
structure is. The information in a DataSet is presented exactly as in the database. To
navigate from one row to another, you must manually resolve their relationship by
using a foreign key to find the referred row in the related table. Let’s move from the
representation of the entities to how you can manipulate them efficiently.

1.3.2 Units of work and conversations

When users work on applications, they perform distinct unitary operations. These
operations can be referred to as conversations (or business transactions or application

17Why do we need NHibernate?
transactions). For example, placing a bid on an item is a conversation. Seasoned pro-
grammers know how hard it can be to make sure that many related operations per-
formed by the user are treated as if they were a single bigger business transaction (a
unit). You’ll learn in this section that NHibernate makes this easier to achieve. Let’s
take another example to illustrate this concept.

 Popular media players allow you to rate the songs you hear and later sort them
based on your rating. This means your ratings are persisted. When you open a list of
songs, you listen and rate them one by one. When should persistence take place?

 The first solution that may come to mind is to persist the rating when the user
enters it. This technique is inefficient: the user may change the rating many times,
and the persistence will be done separately for each song. (But this approach is safest
if you expect the application to crash at any moment.)

 Instead, you can let the user rate all the songs and then persist the ratings when
the user closes the list. The process of rating these songs is a conversation.

 Let’s see how it works and what its benefits are.
THE UNIT OF WORK PATTERN

When you’re working with a relational database, you may tend to think of commands:
saving or loading. But an application can perform operations involving many entities.
When these entities are loaded or saved depends on the context.

 For example, if you want to load the last item created by a user, you must first save
the user (and the user’s collection of items); then you can run a query retrieving the
item. If you forget to save the user, you’ll start getting hard-to-detect bugs.

Now imagine that you’re involved in a complex conversation involving many updates
and deletes. If you have to manually track which entities to save or delete, while mak-
ing sure you load each entity only once, things can quickly become very difficult.

 NHibernate follows the Unit of Work pattern to solve this problem and ease the
implementation of conversations. (We cover conversations in chapter 5 and imple-
ment them in chapter 10.)

 You can create entities and associate them with NHibernate; then, NHibernate
keeps track of all loading and saving of changes only when required. At the end of the
transaction, NHibernate figures out and applies all changes in their correct order.
TRANSPARENT PERSISTENCE AND LAZY LOADING

Because NHibernate keeps track of all entities, it can greatly simplify your application
and increase the application’s performance. Here are two simple examples.

 When working on an item in the auction application, users can add, modify, or
delete their bids. It would be painful to manually track these changes one by one.

The Identity Map pattern
NHibernate uses the Identity Map pattern to make sure an item’s user is the same
object as the user you had before loading the item (as long as you’re working in the
same transaction). You’ll learn more about the concept of identity in section 3.5.

18 CHAPTER 1 Object/relational persistence in .NET
Instead, you can use NHibernate’s transparent persistence feature: you ask NHibernate to
save all changes in the collection of bids when the item is persisted. It automatically
figures out which CRUD operations must be executed.

 Now, if you want to modify a User, you load, change, and persist it. But what about
the collection of items this user has? Should you load these items or leave the collec-
tion un-initialized? Loading the items would be inefficient, but leaving the collection
un-initialized will limit your ability to manipulate the user.

 NHibernate support a feature called lazy loading to solve this problem. When load-
ing the user, you can decide between loading the items or not. If you choose not to do
so, the collection is transparently initialized when you need it.

 Using these features has many implications; we progressively cover them in this
book.
CACHING

Tracking entities implies keeping their references somewhere. NHibernate uses a
cache. This cache is indispensable for implementing the Unit of Work pattern, and it
can also make applications more efficient. We cover caching in depth in section 5.3.

 NHibernate’s identity map uses a cache to avoid loading an entity many times. This
cache can be shared by transactions and applications.

 Suppose you build a website for the auction application. Visitors may be interested
in some items. Without a cache, these items will be loaded from the database each
time a visitor wants to see them. With a few lines of code, you can ask NHibernate to
cache these items, and then enjoy the performance gain.

1.3.3 Complex queries and the ADO.NET Entity Framework

This is the last (but not least) feature related to persistence. In section 1.2.5, we talked
about CRUD operations. You’ve learned about features related to CRUD (all having to
do with the Unit of Work pattern). Now we talk about retrieve operations: searching
for and loading information.

 You can easily generate code to load an entity using its identifier (its primary key,
in the context of a relational database). But in real-world applications, users rarely
deal with identifiers; instead, they use criteria to run a search and then pick the infor-
mation they want.
IMPLEMENTING A QUERY ENGINE

If you’re familiar with SQL, you know that you can write complex queries using the
SELECT ... FROM ... WHERE ... construct. But if you work with business objects, you
have to transform the results of your SQL queries into entities. We already advertised
the benefits of working with entities, so it makes more sense to take advantage of those
benefits even when querying the database.

 Based on the fact that NHibernate can load and save entities, we can deduce that it
knows how each entity is mapped to the database. When you ask for an entity by its
identifier, NHibernate knows how to find it. You should be able to express a query
using entity names and properties, and then NHibernate should be able to convert
that into a corresponding SQL query understood by the relational database.

19Why do we need NHibernate?
 NHibernate provides two query APIs:

■ Hibernate Query Language (HQL) is similar to SQL in many ways, but it also has
useful object-oriented features. You can query NHibernate using plain old SQL;
but as you’ll learn, using HQL offers several advantages.

■ Query by Criteria API (QBC) provides a set of type-safe classes to build queries in
your chosen .NET language. This means that if you’re using Visual Studio, you’ll
benefit from the inline error reporting and IntelliSense.

To give you a taste of the power of these APIs, let’s build three simple queries. First,
here is some HQL. It finds all bids for items where the seller’s name starts with the
letter K:

from Bid bid
where bid.Item.Seller.Name like 'K%'

As you can see, this code is easy to understand. If you want to write SQL to do the same
thing, you need something more verbose, along these lines:

select B.*
from BID B
inner join ITEM I on B.ITEM_ID = I.ITEM_ID
inner join USER U on I.AUTHOR_ID = U.USER_ID
where U.NAME like 'K%'

To illustrate the power of the Query by Criteria API, we use an example derived from
one later in the book, in section 8.5.1. This shows a method that lets you find and load
all users who are similar to an example user, and who also have a bid item similar to a
given example item:

public IList<User> FindUsersWithSimilarBidItem(User u, Item i) {
 Example exampleUser =
 Example.Create(u).EnableLike(MatchMode.Anywhere);
 Example exampleItem =
 Example.Create(i).EnableLike(MatchMode.Anywhere);
 return GetSession().CreateCriteria(typeof(User))
 .Add(exampleUser)
 .CreateCriteria("Items")
 .Add(exampleItem)
 .List<User>();
}

This method lets you pass objects that represent the kind of users you want NHiber-
nate to find and load. It creates two NHibernate Example objects and uses the Query
by Criteria API to run the query and retrieve a list of users. The notion of an example
entity (here, example User and example Item) is both powerful and elegant, as dem-
onstrated here:

User u = new User();
Item i = new Item();
u.Name = "K";
i.State = ItemState.Active;
i.ApprovedBy = administratorUser;
List<User> result = FindUsersWithSimilarBidItem(u, i);

20 CHAPTER 1 Object/relational persistence in .NET
You use the FindUsersWithSimilarBidItem method to retrieve users whose names
contain K and who are selling an active bid Item, which has also been approved by the
administrator. Quite a feat for so little code! If you’re new to this approach, you may
find it unbelievable. Don’t even try to implement this query using hand-coded SQL.

 You’ll learn more about queries in chapters 5 and 7. If you aren’t fully satisfied by
these APIs, you may also want to watch for upcoming developments that allow LINQ to
be used with NHibernate.
ADO.NET ENTITY FRAMEWORK

At the time of this writing, Microsoft is working on its next-generation data-access
technology, which introduces a number of interesting innovations. You may think this
technology will soon replace NHibernate, but this is unlikely. Let’s see why.

 Perhaps the most exciting new feature is a powerful query framework code-named
LINQ. LINQ extends your favorite .NET language so that you can run queries against
various types of data source without having to embed query strings in your code.
When querying a relational database, you can do something like this:

IEnumerable users = from u in Users
 where u.Lastname.StartsWith("K")
 order by user.Lastname descending
 select u;

As you can see, the queries are type-safe and allow you to take advantage of many .NET
language features. One key aspect of LINQ is that it gives you a declarative way of work-
ing with data, so you can express what you want in simple terms rather than typing lots
of for-each loops. You can also benefit from helpful IDE capabilities such as auto-
completion and parameter assistance. This is a big win for everybody.

 Because LINQ is designed to be extensible, other tools such as NHibernate can
integrate with this technology and benefit from it. At the time of writing, good prog-
ress is being made toward a LINQ to NHibernate project. And Manning Publications
has published LINQ in Action, a fantastic book by our good friend Fabrice Marguerie.

 As mentioned earlier, Microsoft is also working on a framework currently called
the ADO.NET Entity Framework, which aims to provide developers with an ORM
framework not completely unlike NHibernate. This is a good step forward because
Microsoft will promote the DataSet less often and begin promoting the benefits of
ORM tools. Another project called LINQ over DataSet greatly improves DataSet’s query
capabilities, but it doesn’t yet solve many other issues discussed in this chapter.

 All these technologies will take time to mature. Many questions remain unan-
swered, such as, how extensible will this framework be? Will it support most popular
RDBMSs or just SQL Server? Will it be easy to work with legacy database schemas? No
framework can provide all features, so it must be extendable to let you integrate your
own features. (If your particular projects require you to work with legacy databases,
you can read section 10.2 to learn about the features NHibernate gives you to work
with more exotic data structures.)

 Now, let’s dig into the theory behind NHibernate.

21Object/relational mapping
1.4 Object/relational mapping
You already have an idea of how NHibernate provides object/relational persistence.
But you may still be unable to tell what ORM is. We try to answer this question now.
After that, we discuss some nontechnical reasons to use ORM.

1.4.1 What is ORM?

Time has proven that relational databases provide a good means of storing data, and
that object-oriented programming is a good approach to building complex applica-
tions. With object/relational mapping, it’s possible to create a translation layer that
can easily transform objects into relational data and back again. As this bridge will
manipulate objects, it can provide many of the features we need (like caching, transac-
tion, and concurrency control). All we have to do is provide information on how to
map objects to tables.

 Briefly, object/relational mapping is the automated (and possibly transparent)
persistence of objects in an application to the tables in a relational database, using
metadata that describes the mapping between the objects and the database. ORM, in
essence, works by transforming data from one representation to another.

You learned in section 1.3.1 that there are many problems to solve when using ORM. We
refer to these problems as the paradigm mismatch. Let’s discuss, from a non-technical
point of view, why we should face this mismatch and use an ORM tool like NHibernate.

1.4.2 Why ORM?

The overall solution for mismatch problems can require a significant outlay of time
and effort. In our experience, the main purpose of up to 30 percent of the .NET appli-
cation code written is to handle tedious SQL/ADO.NET and manual bridging of the
object/relational paradigm mismatch. Despite all this effort, the end result doesn’t
feel right. We’ve seen projects nearly sink due to the complexity and inflexibility of
their database abstraction layers.
MODELING MISMATCH

One of the major costs is in the area of modeling. The relational and object models
must both encompass the same business entities. But an object-oriented purist will
model these entities differently than an experienced relational data modeler. You

Isn’t ORM a Visio plug-in?
The acronym ORM can also mean object role modeling, and this term was invented
before object/relational mapping became relevant. It describes a method for informa-
tion analysis, used in database modeling, and is primarily supported by Microsoft Vi-
sio, a graphical modeling tool. Database specialists use it as a replacement or as an
addition to the more popular entity-relationship modeling. But if you talk to .NET de-
velopers about ORM, it’s usually in the context of object/relational mapping.

22 CHAPTER 1 Object/relational persistence in .NET
learned some details of this problem in section 1.3.1. The usual solution is to bend
and twist the object model until it matches the underlying relational technology.

 This can be done successfully, but only at the cost of losing some of the advantages
of object orientation. Keep in mind that relational modeling is underpinned by rela-
tional theory. Object orientation has no such rigorous mathematical definition or
body of theoretical work. No elegant transformation is waiting to be discovered.
(Doing away with .NET and SQL and starting from scratch isn’t considered elegant.)
PRODUCTIVITY AND MAINTAINABILITY

The domain-modeling mismatch isn’t the only problem solved by ORM. A tool like
NHibernate makes you more productive. It eliminates much of the grunt work (more
than you’d expect) and lets you concentrate on business problems. No matter which
application-development strategy you prefer—top-down, starting with a domain
model; or bottom-up, starting with an existing database schema—NHibernate used
together with the appropriate tools will significantly reduce development time.

 Using fewer lines of code makes the system more understandable because it
emphasizes business logic rather than plumbing. Most important, a system with less
code is easier to refactor. NHibernate substantially improves maintainability, not only
because it reduces the number of lines of code, but also because it provides a buffer
between the object model and the relational representation. It allows a more elegant
use of object orientation on the .NET side, and it insulates each model from minor
changes to the other.
PERFORMANCE

A common claim is that hand-coded persistence can always be at least as fast, and
often faster, than automated persistence. This is true in the same sense that it’s true
that assembly code can always be at least as fast as .NET code—in other words, it’s
beside the point.

 The unspoken implication of the claim is that hand-coded persistence will per-
form at least as well in an application. But this implication will be true only if the
effort required to implement at-least-as-fast hand-coded persistence is similar to the
amount of effort involved in utilizing an automated solution. The interesting question
is, what happens when we consider time and budget constraints?

 The best way to address this question is to define a means to measure performance
and thresholds of acceptability. Then you can find out whether the performance cost
of an ORM is unacceptable. Experience has proven that a good ORM has a minimal
impact on performance. It can even perform better than classic ADO.NET when cor-
rectly used, due to features like caching and batching. NHibernate is based on a
mature architecture that lets you take advantage of many performance optimizations
with minimal effort.
DATABASE INDEPENDENCE

NHibernate abstracts your application away from the underlying SQL database and
SQL dialect. The fact that it supports a number of different databases confers a level of
portability on your application.

23Summary
 You shouldn’t necessarily aim to write totally database-independent applications,
because database capabilities differ and achieving full portability would require sacri-
ficing some of the strength of the more powerful platforms. But an ORM can help mit-
igate some of the risks associated with vendor lock-in. In addition, database
independence helps in development scenarios where you use a lightweight local data-
base but deploy for production on a different database platform.

1.5 Summary
In this chapter, we’ve discussed the concept of object persistence and the importance
of NHibernate as an implementation technique. Object persistence means that indi-
vidual objects can outlive the application process; they can be saved to a data store
and be re-created later. We’ve walked through the layered architecture of a .NET appli-
cation and the implementation of persistence, exploring four possible approaches.

 You now understand the productivity of DataSet, but you also realize how limited and
rigid it is. You’ve learned about many useful features that would be painful to hand code.
In addition, you know how NHibernate solves the object/relational mismatch.

 This mismatch comes into play when the data store is a SQL-based RDBMS. For
instance, a graph of richly typed objects can’t be saved to a database table; it must be
disassembled and persisted to columns of portable SQL data types.

 We glanced at NHibernate’s powerful query APIs. After you’ve started using them,
you may never want to go back to SQL.

 Finally, you learned what ORM is. We discussed, from a non-technical point of view,
the advantages of using this approach.

 ORM isn’t a silver bullet for all persistence tasks; its job is to relieve the developer of
95 percent of object persistence work, such as writing complex SQL statements with
many table joins and copying values from ADO.NET result sets to objects or graphs of
objects. A full-featured ORM middleware like NHibernate provides database portabil-
ity, certain optimization techniques like caching, and other functions that aren’t easy
to hand code in a limited time with SQL and ADO.NET.

 It’s likely that a better solution than ORM will exist some day. We (and many oth-
ers) may have to rethink everything we know about SQL, persistence API standards,
and application integration. The evolution of today’s systems into true relational data-
base systems with seamless object-oriented integration remains pure speculation. But
we can’t wait, and there is no sign that any of these issues will improve soon (a multi-
billion-dollar industry isn’t agile). ORM is the best solution currently available, and it’s
a timesaver for developers facing the object/relational mismatch every day.

 We’ve given you background on the reasons behind ORM, the critical issues that
must be addressed, and the tools and approaches available with .NET for addressing
them. We’ve explained that NHibernate is a fantastic ORM tool that lets you combine
the benefits of both object orientation and relational databases simultaneously. The
next step is to give you a hands-on look at NHibernate so you can see how to use it in
your projects. That’s where chapter 2 comes in.

Hello NHibernate!
It’s good to understand the need for object/relational mapping in .NET applica-
tions, but you’re probably eager to see NHibernate in action. We start by showing
you a simple example that demonstrates some of its power.

 As you’re probably aware, it’s traditional for a programming book to start with a
“Hello World” example. In this chapter, we follow that tradition by introducing
NHibernate with a relatively simple “Hello World” program. But printing a message
to a console window won’t be enough to really demonstrate NHibernate. Instead,
your program will store newly created objects in the database, update them, and
perform queries to retrieve them from the database.

 This chapter forms the basis for the subsequent chapters. In addition to the
canonical “Hello World” example, we introduce the core NHibernate APIs and
explain how to configure NHibernate in various runtime environments, such as
ASP.NET applications and standalone WinForms applications.

This chapter covers
■ NHibernate in action with a “Hello World” application
■ How to architecture an NHibernate application
■ Writing and mapping a simple entity
■ Configuring NHibernate
■ Implementing primitive CRUD operations
24

25“Hello World” with NHibernate
2.1 “Hello World” with NHibernate
NHibernate applications define persistent classes that are mapped to database tables.
Our “Hello World” example consists of one class and one mapping file. Let’s see what
a simple persistent class looks like, how the mapping is specified, and some of the
things you can do with instances of the persistent class using NHibernate.

2.1.1 Installing NHibernate

Before you can start coding the “Hello World” application, you must first install NHi-
bernate. You then need to create a new Visual Studio solution to contain the sample
application.

 NHibernate 1.2.1GA can be downloaded via http://www.nhforge.org. Click the
“download” tab and locate “NHibernate Core.” From there you can find and down-
load the NHibernate 1.2.1.GA.msi file.

 Although the book is written for NHibernate 1.2.1GA, we’re aware that many peo-
ple are using NHibernate 2.0 Beta. We’ve therefore ensured our first tutorial applies
to both of these versions of NHibernate.

 Once you’ve downloaded and installed NHibernate, you’re ready to create a new
solution and start using it.

2.1.2 Create a new Visual Studio project

For the example application, you should create a new blank project with Visual Stu-
dio. This is a simple application, so the easiest thing to create is a C# Console Applica-
tion. Name your project HelloNHibernate. Note that you can also use NHibernate with
VB.NET projects, but in this book, we’ve chosen to use C# examples.

 The application will need to use the NHibernate library, so the next step is to refer-
ence it in your new project. To do this, follow these steps:

1 Right-click the project and select Add Reference.
2 Click the Browse tab and navigate to the folder where NHibernate is installed.

By default, NHibernate resides in the C:\Program Files\NHibernate\bin\net2.0\
folder.

3 From the list of assemblies, select NHibernate.dll. Click OK to add this refer-
ence to your solution.

By default, the Console Application should have added a file called Pro-
gram.cs to your solution. Locate this file and open it. Note that, in console appli-
cations, this will be the first thing that is run when you execute the program.

4 Reference the NHibernate library at the top of the Program.cs file with the
using NHibernate, using System.Reflection and NHibernate.Cfg statements,
as follows:

using System;
using System.Reflection;
using NHibernate;
using NHibernate.Cfg;

http://www.nhforge.org

26 CHAPTER 2 Hello NHibernate!
namespace HelloNHibernate
{
 public class Program
 {
 static void Main()
 {
 }
 }
}

Now that your solution is set up, you’re ready to start writing your first NHibernate
application.

2.1.3 Creating the Employee class

The objective of the sample application is to store an Employee record in a database
and to later retrieve it for display. The application needs a simple persistent class,
Employee, which represents a person who is employed by a company.

 In Visual Studio, add a new class file to your application and name it Employee.cs
when prompted. Then enter the code from listing 2.1 for the Employee entity.

namespace HelloNHibernate
{
 class Employee
 {
 public int id;
 public string name;
 public Employee manager;

 public string SayHello()
 {
 return string.Format(
 "'Hello World!', said {0}.", name);
 }
 }
}

The Employee class has three fields: the identifier, the name of the employee, and a ref-
erence to the employee’s manager. The identifier field allows the application to access
the database identity—the primary key value—of a persistent object. If two instances of
Employee have the same identifier value, they represent the same row in the database.
We’ve chosen int for the type of the identifier field, but this isn’t a requirement.
NHibernate allows virtually anything for the identifier type, as you’ll see later.

 Note that you use public fields here rather than properties. This is purely to make
the sample code shorter; it isn’t always considered good practice.

 Instances of the Employee class may be managed (made persistent) by NHibernate,
but they don’t have to be. Because the Employee object doesn’t implement any
NHibernate-specific classes or interfaces, you can use it like any other .NET class:

Listing 2.1 Employee.cs: A simple persistent class

27“Hello World” with NHibernate
Employee fred = new Employee();
fred.name = "Fred Bloggs";
Console.WriteLine(fred.SayHello());

This code fragment does exactly what you’ve come to expect from “Hello World”
applications: it prints “Hello World, said Fred Bloggs” to the console. It may look like
we’re trying to be cute; in fact, we’re demonstrating an important feature that distin-
guishes NHibernate from some other persistence solutions. The persistent class can be
used with or without NHibernate—no special requirements are needed. Of course,
you came here to see NHibernate, so let’s first set up the database and then demon-
strate using NHibernate to save a new Employee to it.

2.1.4 Setting up the database

You need to have a database set up so that NHibernate has somewhere to save entities.
Setting up a database for this program should only take a minute. NHibernate can
work with many databases, but for this example you’ll use Microsoft SQL Server 2000
or 2005.

 Your first step is to open Microsoft SQL Server Management Studio, connect to
your database server, and open a new query window. Type the following in the SQL
window to quickly create a new database:

CREATE DATABASE HelloNHibernate
GO

Run this SQL to create the database. The next step is to switch to that database and
create a table to hold your Employee data. To do so, delete the previous SQL and
replace it with the following

USE HelloNHibernate
GO
CREATE TABLE Employee (
 id int identity primary key,
 name varchar(50),
 manager int)
GO

Run this code: you’ve created a place to store your Employee entities. You’re now
ready to see NHibernate in action!

 Note that, in chapter 9, we show you how to use NHibernate to automatically create
the tables your application needs using just the information in the mapping files.
There’s some more SQL you won’t need to write by hand!

2.1.5 Creating an Employee and saving to the database

The code required to create an Employee and save it to the database is shown in list-
ing 2.2. It comprises two functions: CreateEmployeeAndSaveToDatabase and Open-
Session. You can type these functions into your Program.cs file below the static
void Main() function in the Program class.

28 CHAPTER 2 Hello NHibernate!
static void CreateEmployeeAndSaveToDatabase()
{
 Employee tobin = new Employee();
 tobin.name = "Tobin Harris";

 using (ISession session = OpenSession())
 {
 using(ITransaction transaction = session.BeginTransaction())
 {
 session.Save(tobin);
 transaction.Commit();
 }
 Console.WriteLine("Saved Tobin to the database");
 }
}

static ISession OpenSession()
{
 if(factory == null)
 {
 Configuration c = new Configuration();
 c.AddAssembly(Assembly.GetCallingAssembly());
 factory = c.BuildSessionFactory();
 }
 return factory.OpenSession();
}

static ISessionFactory factory;

The CreateEmployeeAndSaveToDatabase function calls the NHibernate Session and
Transaction interfaces. (We’ll get to that OpenSession() call soon.) You’re not
ready to run the code just yet; but to give you an idea of what would happen, running
the CreateEmployeeAndSaveToDatabase function would result in NHibernate execut-
ing some SQL behind the scenes:

insert into Employees (name, manager)
values ('Tobin Harris', null)

Hold on—the Id column isn’t being initialized here. You didn’t set the id field of mes-
sage anywhere, so how can you expect it to get a value? The id property is special: it’s
an identifier property—it holds a unique value generated by the database. This gener-
ated value is assigned to the Employee instance by NHibernate during the call to the
Save() method.

 We don’t discuss the OpenSession function in depth here, but essentially it config-
ures NHibernate and returns a session object that you can use to save, load, and
search objects in your database (and much more!). Don’t use this OpenSession func-
tion in your production projects; you’ll learn more economical approaches through-
out this book.

 You now have the Employee class defined, and have added an Employee table to
your database. We’ve also added some code to create an Employee instance and save it

Listing 2.2 Creating and saving an Employee

29“Hello World” with NHibernate
to the database using NHibernate. To complete the program, you will next add some
code that will load the Employee from the database, and print our “Hello World” mes-
sage. Let’s add that code now.

2.1.6 Loading an Employee from the database

Let’s start by adding code that can retrieve all Employees from the database in alpha-
betical order. Type the code in listing 2.3 below the previous OpenSession() function.

static void LoadEmployeesFromDatabase()
{
 using (ISession session = OpenSession())
 {
 IQuery query = session.CreateQuery(
 "from Employee as emp order by emp.name asc");

 IList<Employee> foundEmployees = query.List<Employee>();

 Console.WriteLine("\n{0} employees found:",
 foundEmployees.Count);

 foreach(Employee employee in foundEmployees)
 Console.WriteLine(employee.SayHello());
 }
}

The literal string "from Employee as emp order by emp.name asc" is an NHibernate
query, expressed in NHibernate’s own object-oriented Hibernate Query Language
(HQL). This query is internally translated into the following SQL when query.List()
is called:

select e.id, e.name, e.manager
from Employee e
order by e.name asc

If you’ve never used an ORM tool like NHibernate before, you were probably expect-
ing to see the SQL statements somewhere in the code or metadata. They aren’t there.
All SQL is generated at runtime (at startup, where possible).

 So far, you’ve defined the Employee entity, set up the database, and written code to
create a new Employee and later retrieve it from the Employee table. NHibernate has
barely entered the picture yet. Next, you’ll write some XML to tell NHibernate about
the Employee entity and how you want Employees saved in the database.

2.1.7 Creating a mapping file

In order for NHibernate to do its magic in any of the code so far, it first needs more
information about how the Employee class should be made persistent. This informa-
tion is usually provided in an XML mapping document. The mapping document
defines, among other things, how properties of the Employee class map to columns of
the Employees table. Let’s look at the mapping document in listing 2.4.

Listing 2.3 Retrieving Employees

30 CHAPTER 2 Hello NHibernate!
<?xml version="1.0"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 auto-import="true">
 <class name="HelloNHibernate.Employee, HelloNHibernate" lazy="false">
 <id name="id" access="field">
 <generator class="native" />
 </id>
 <property name="name" access="field" column="name"/>
 <many-to-one access="field" name="manager" column="manager"
 cascade="all"/>
 </class>
</hibernate-mapping>

To add this mapping document to your solution, do the following:

1 Right-click your HelloNHibernate project in the Solution Explorer, and select
Add > New Item.

2 Select the XML document type, and name it Employee.hbm.xml.
3 Click OK.
4 Now highlight the XML file in Solution Explorer and look for the Build Action

property in the Properties pane.
5 Change it from “Content” to “Embedded Resource.” This is an important step

that you shouldn’t miss, because it allows NHibernate to easily find the mapping
information.

6 Now copy the XML in listing 2.4 into your Employee.hbm.xml file.

The mapping document you’ve just created tells NHibernate that the Employee class is
to be persisted to the Employees table, that the id field maps to a column named id,
that the name field maps to a column named name, and that the manager property is
an association with many-to-one multiplicity that maps to a column named Man-
agerId. (Don’t worry about the other details for now.)

 As you can see, the XML document isn’t difficult to understand. You can easily
write and maintain it by hand. In chapter 3, we discuss a way to generate the XML file
from comments embedded in the source code. Whichever method you choose, NHi-
bernate has enough information to completely generate all the SQL statements
needed to insert, update, delete, and retrieve instances of the Employee class. You no
longer need to write these SQL statements by hand.

NOTE NHibernate has sensible defaults that minimize typing and a mature doc-
ument type definition that can be used for auto-completion or validation
in editors, including Visual Studio. You can even automatically generate
metadata with various tools.

While we’re on the subject of XML, now is a good time to show you how to configure
NHibernate.

Listing 2.4 Simple Hibernate XML mapping

31“Hello World” with NHibernate
2.1.8 Configuring your application

If you’ve created .NET applications that use DataSets or DataReaders to connect to a
database, you may be familiar with the concept of storing a ConnectionString in your
web.config or app.config file. Configuring NHibernate is similar; you add some con-
nection information to the config file. Follow these steps:

1 Right-click your HelloNHibernate project in the Solution Explorer, and select
Add > New Item.

2 Select Application Configuration File from the options. Click OK to add an
app.config file to the project.

3 Copy the following XML into your file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="nhibernate"
 type="System.Configuration.NameValueSectionHandler,
 System, Version=1.0.3300.0,Culture=neutral,
 PublicKeyToken=b77a5c561934e089"
 />
 </configSections>
 <nhibernate>
 <add key="hibernate.show_sql"
 value="false" />
 <add key="hibernate.connection.provider"
 value="NHibernate.Connection.DriverConnectionProvider" />
 <add key="hibernate.dialect"
 value="NHibernate.Dialect.MsSql2000Dialect" />
 <add key="hibernate.connection.driver_class"
 value="NHibernate.Driver.SqlClientDriver" />
 <add key="hibernate.connection.connection_string"
 value="Data Source=127.0.0.1;
 Database=HelloNHibernate;Integrated Security=SSPI;" />
 </nhibernate>
</configuration>

That’s quite a lot of XML! But remember, NHibernate is very flexible and can be config-
ured in many ways. Note that you may need to change the hibernate.connection.
connection_string key at the bottom of the XML to connect to the database server on
your development computer.

 Also note that this configuration is for NHibernate 1.2.1GA. If you’re using NHi-
bernate 2.0 or later, then copy the following XML instead:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="hibernate-configuration"
 type="NHibernate.Cfg.ConfigurationSectionHandler, NHibernate" />
 </configSections>

 <hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>

32 CHAPTER 2 Hello NHibernate!
 <property name="connection.provider">
 NHibernate.Connection.DriverConnectionProvider
 </property>
 <property name="connection.driver_class">
 NHibernate.Driver.SqlClientDriver
 </property>
 <property name="connection.connection_string">
 Server=(local);database=HelloNHibernate;Integrated Security=SSPI;
 </property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2000Dialect
 </property>
 <property name="show_sql">
 false
 </property>
 </session-factory>
 </hibernate-configuration>
</configuration>

2.1.9 Updating an Employee

You’ve added code for saving and loading Employees. Before we run our application,
let’s finish off by adding one more function to demonstrate how NHibernate can
update existing entities. You’ll write some code to update the first Employee and, while
you’re at it, create a new Employee to be the manager of the first, as shown in listing 2.5.
Again, type this code below the other functions in Program.cs.

static void UpdateTobinAndAssignPierreHenriAsManager()
{
 using (ISession session = OpenSession())
 {
 using (ITransaction transaction = session.BeginTransaction())
 {
 IQuery q = session.CreateQuery(
"from Employee where name = 'Tobin Harris'");

 Employee tobin = q.List<Employee>()[0];
 tobin.name = "Tobin David Harris";

 Employee pierreHenri = new Employee();
 pierreHenri.name = "Pierre Henri Kuate";

 tobin.manager = pierreHenri;
 transaction.Commit();

 Console.WriteLine("Updated Tobin and added Pierre Henri");
 }
 }
}

Behind the scenes, NHibernate runs four SQL statements inside the same transaction:

select e.id, e.name, e.manager
from Employee e
where e.id = 1

Listing 2.5 Updating an Employee

33Understanding the architecture
insert into Employees (name, manager)
values ('Pierre Henri Kuate', null)

declare @newId int
select @newId = scope_identity()

update Employees
set name = 'Tobin David Harris', manager = @newId
where id = 1

Notice how NHibernate detects the modification to the name and manager properties
of the first Employee (Tobin) and automatically updates the database. You’re taking
advantage of an NHibernate feature called automatic dirty checking: this feature saves
you the effort of explicitly asking NHibernate to update the database when we modify
the state of an object. Similarly, you can see that the new Employee (Pierre Henri) was
saved when it was associated with the first Employee. This feature is called cascading
save: it saves you the effort of explicitly making the new object persistent by calling
Save(), as long as it’s reachable by an already persistent object (Tobin). Also, notice
that the ordering of the SQL statements isn’t the same as the order in which you set
fields of the object. NHibernate uses a sophisticated algorithm to determine an effi-
cient ordering that avoids database foreign-key-constraint violations but is still suffi-
ciently predictable to the user. This feature is called transactional write-behind.

2.1.10 Running the program

Before finally running the example, you need to write some code to run all these func-
tions in the right order. Modify your Program.cs Main method to look like this:

static void Main()
 {
 CreateEmployeeAndSaveToDatabase();
 UpdateTobinAndAssignPierreHenriAsManager();
 LoadEmployeesFromDatabase();

 Console.WriteLine("Press any key to exit...");
 Console.ReadKey();
 }

If you run “Hello World,” it prints

Saved Tobin to the database
Updated Tobin and added Pierre Henri

2 employees found:
'Hello World!', said Pierre Henri Kuate.
'Hello World!', said Tobin David Harris.
Press any key to exit...

This is as far as we take the “Hello World” application. Now that you have some code
under your belt, we take a step back and present an overview of NHibernate’s main APIs.

2.2 Understanding the architecture
The programming interfaces are the first thing you have to learn about NHibernate in
order to use it in the persistence layer of your application. A major objective of API

34 CHAPTER 2 Hello NHibernate!
design is to keep the interfaces between software components as narrow as possible.
But in practice, ORM APIs aren’t especially small. Don’t worry; you don’t have to
understand all the NHibernate interfaces at once.

 Figure 2.1 illustrates the roles of the most important NHibernate interfaces in
the business and persistence layers. We show the business layer above the
persistence layer because the business layer acts as a client of the persistence layer
in a traditionally layered application. Note that some simple applications may
not cleanly separate business logic from persistence logic; that’s OK—it simplifies
the diagram.

 The NHibernate interfaces shown in figure 2.1 may be approximately classified as
follows:

■ Interfaces called by applications to perform basic CRUD and querying opera-
tions (Create, Retrieve, Update, and Delete). These interfaces are the main
point of dependency of application business/control logic on NHibernate.
They include ISession, ITransaction, IQuery, and ICriteria.

■ Interfaces called by application infrastructure code to configure NHibernate,
most importantly the Configuration class.

■ Callback interfaces that allow the application to react to events occurring inside
NHibernate, such as IInterceptor, ILifecycle, and IValidatable.

■ Interfaces that allow extension of NHibernate’s powerful mapping functionality,
such as IUserType, ICompositeUserType, and IIdentifierGenerator. These
interfaces are implemented by application infrastructure code (if necessary).

NHibernate makes use of existing .NET APIs, including ADO.NET and its ITransaction
API. ADO.NET provides a rudimentary level of abstraction of functionality common to
relational databases, letting NHibernate support almost any database with an
ADO.NET driver.

N

I

I

II
I I

I

I

.NET API

ADO.NET COM+

ICriteria

Figure 2.1 High-level
overview of the NHibernate
API in a layered architecture

35Understanding the architecture
In this section, we don’t cover the detailed semantics of NHibernate API methods, just
the role of each of the primary interfaces. We progressively discuss API methods in
the next chapters. You can find a complete and succinct description of these inter-
faces in NHibernate’s reference documentation. Let’s take a brief look at each inter-
face in turn.

2.2.1 The core interfaces

The five core interfaces described in this section are used in just about every NHiber-
nate application. Using these interfaces, you can store and retrieve persistent objects
and control transactions.
ISESSION INTERFACE

The ISession interface is the primary interface used by NHibernate applications. It
exposes NHibernate’s methods for finding, saving, updating, and deleting objects. An
instance of ISession is lightweight and is inexpensive to create and destroy. This is
important because your application will need to create and destroy sessions all the
time, perhaps on every ASP.NET page request. NHibernate sessions are not thread safe
and should by design be used by only one thread at a time. This is discussed in further
details in future chapters.

 The NHibernate notion of a session is something between connection and transaction.
It may be easier to think of a session as a cache or collection of loaded objects relating
to a single unit of work. NHibernate can detect changes to the objects in this unit of
work. We sometimes call the ISession a persistence manager because it’s also the inter-
face for persistence-related operations such as storing and retrieving objects. Note
that an NHibernate session has nothing to do with an ASP.NET session. When we use
the word session in this book, we mean the NHibernate session.

 We describe the ISession interface in detail in section 4.2.
ISESSIONFACTORY INTERFACE

The application obtains ISession instances from an ISessionFactory. Compared to
the ISession interface, this object is much less exciting.

 The ISessionFactory certainly isn’t lightweight! It’s intended to be shared among
many application threads. There is typically a single instance of ISessionFactory for
the whole application—created during application initialization, for example. But
if your application accesses multiple databases using NHibernate, you’ll need a
SessionFactory for each database.

 The SessionFactory caches generated SQL statements and other mapping meta-
data that NHibernate uses at runtime. It can also hold cached data that has been read
in one unit of work and which may be reused in a future unit of work or session. This
is possible if you configure class and collection mappings to use the second-level cache.
CONFIGURATION INTERFACE

The Configuration object is used to configure NHibernate. The application uses a
Configuration instance to specify the location of mapping documents and to set
NHibernate-specific properties before creating the ISessionFactory.

36 CHAPTER 2 Hello NHibernate!
 Even though the Configuration interface plays a relatively small part in the total
scope of an NHibernate application, it’s the first object you’ll meet when you begin using
NHibernate. Section 2.2 covers the issue of configuring NHibernate in some detail.
ITRANSACTION INTERFACE

The ITransaction interface is shown in figure 2.1, next to the ISession interface.
The ITransaction interface is an optional API. NHibernate applications may choose
not to use this interface, instead managing transactions in their own infrastructure
code. An NHibernate ITransaction abstracts application code from the underlying
transaction implementation—which might be an ADO.NET transaction or any kind of
manual transaction—allowing the application to control transaction boundaries via a
consistent API. This helps to keep NHibernate applications portable between different
kinds of execution environments and containers.

 We use the NHibernate ITransaction API throughout this book. Transactions and
the ITransaction interface are explained in chapter 5.
IQUERY AND ICRITERIA INTERFACES

The IQuery interface gives you powerful ways to perform queries against the database
while also controlling how the query is executed. It’s the basic interface used for fetch-
ing data using NHibernate. Queries are written in HQL or in your database’s native
SQL dialect. An IQuery instance is lightweight and can’t be used outside the ISession
that created it. It’s used to bind query parameters, limit the number of results
returned by the query, and execute the query.

 The ICriteria interface is similar; it lets you create and execute object-oriented
criteria queries.

 We describe the features of the IQuery interface in chapter 7, where you’ll learn
how to use it in your applications. Now that we’ve introduced you to the main APIs
needed to write real-world NHibernate applications, the next section introduces some
more advanced features. After that, we dive into how NHibernate is configured and
how you can set up logging to view what NHibernate is doing behind the scenes (a
great way of seeing NHibernate in action, if you’ll excuse the pun!).

2.2.2 Callback interfaces

Callback interfaces allow the application to receive a notification when something inter-
esting happens to an object—for example, when an object is loaded, saved, or deleted.
NHibernate applications don’t need to implement these callbacks, but they’re useful for
implementing certain kinds of generic functionality, such as creating audit records.

 The ILifecycle and IValidatable interfaces let a persistent object react to events
relating to its own persistence lifecycle. The persistence lifecycle is encompassed by an
object’s CRUD operations (when it’s created, retrieved, updated, or deleted).

NOTE The original Hibernate team was heavily influenced by other ORM solu-
tions that have similar callback interfaces. Later, they realized that having
the persistent classes implement Hibernate-specific interfaces probably
isn’t a good idea, because doing so pollutes our persistent classes with
nonportable code. Because these interfaces are deprecated, we don’t dis-
cuss them in this book.

37Understanding the architecture
The IInterceptor interface was introduced to let the application process callbacks
without forcing the persistent classes to implement NHibernate-specific APIs. Imple-
mentations of the IInterceptor interface are passed to the persistent instances as
parameters. We discuss an example in chapter 8.

2.2.3 Types

A fundamental and powerful element of the architecture is NHibernate’s notion of a
Type. An NHibernate Type object maps a .NET type to a database column type (the
type may span multiple columns). All persistent properties of persistent classes,
including associations, have a corresponding NHibernate type. This design makes
NHibernate extremely flexible and extensible because each RDBMS has a different set
of mapping to .NET types.

 NHibernate includes a rich range of built-in types, covering all .NET primitives and
many CLR classes, including types for System.DateTime, System.Enum, byte[], and
Serializable classes.

 Even better, NHibernate supports user-defined custom types. The interfaces IUser-
Type, ICompositeUserType and IParameterizedType are provided to let you create
your own types. You can also use IUserCollectionType to create your own collection
types. You can use this feature to handle commonly used application classes such as
Address, Name, and MonetaryAmount conveniently and elegantly. Custom types are
considered a central feature of NHibernate, and you’re encouraged to put them to
new and creative uses!

 We explain NHibernate types and user-defined types in section 6.1. We now go on
to list some of the lower-level interfaces. You may not need to use or understand all of
them, but knowing they exist may give you extra flexibility when it comes to designing
your applications.

2.2.4 Extension interfaces

Much of the functionality that NHibernate provides is configurable, allowing you to
choose between certain built-in strategies. When the built-in strategies are insufficient,
NHibernate will usually let you plug in your own custom implementation by imple-
menting an interface. Extension points include the following:

■ Primary-key generation (IIdentifierGenerator interface)
■ SQL dialect support (Dialect abstract class)
■ Caching strategies (ICache and ICacheProvider interfaces)
■ ADO.NET connection management (IConnectionProvider interface)
■ Transaction management (ITransactionFactory and ITransaction interfaces)
■ ORM strategies (IClassPersister interface hierarchy)
■ Property-access strategies (IPropertyAccessor interface)
■ Proxy creation (IProxyFactory interface)

NHibernate ships with at least one implementation of each of the listed interfaces, so you
don’t usually need to start from scratch if you wish to extend the built-in functionality.
The source code is available for you to use as an example for your own implementation.

38 CHAPTER 2 Hello NHibernate!
 You should now have an awareness of the various APIs and interfaces that NHiber-
nate provides. Luckily, you won’t need them all. For simple applications, you may need
only the Configuration and ISession interfaces, as shown in the “Hello World” exam-
ple. But before you can begin to use NHibernate in your applications, you must have
some understanding of how NHibernate is configured. That is what we discuss next.

2.3 Basic configuration
NHibernate can be configured to run in almost any .NET application and develop-
ment environment. Generally, NHibernate is used in two- and three-tiered client/
server applications, with NHibernate deployed only on the server. The client applica-
tion is usually a web browser, but Windows client applications aren’t uncommon.
Although we concentrate on multitiered web applications in this book, we cover Win-
dows applications when needed.

 The first thing you must do is start NHibernate. In practice, doing so is easy: you
create an ISessionFactory instance from a Configuration instance.

2.3.1 Creating a SessionFactory

To create an ISessionFactory instance, you first create a single instance of Configu-
ration during application initialization and use it to set the database access and map-
ping information. Once configured, the Configuration instance is used to create the
SessionFactory. After the SessionFactory is created, you can discard the Configu-
ration class.

 In the previous examples, we used a MySessionFactory static property to create
ISession instances. Here is its implementation:

private static ISessionFactory sessionFactory = null;
public static ISessionFactory MySessionFactory
{
 get
 {
 if(sessionFactory == null)
 {
 Configuration cfg = new Configuration();
 cfg.Configure();
 cfg.AddInputStream(
 HbmSerializer.Default.Serialize(typeof(Employee)));
 // OR: cfg.AddXmlFile("Employee.hbm.xml");
 sessionFactory = cfg.BuildSessionFactory();
 }
 return sessionFactory;
 }
}

The location of the mapping file, Employee.hbm.xml, is relative to the application’s
current directory. In this example, you also use an XML file to set all other configura-
tion options (which may have been set earlier by application code or in the applica-
tion configuration file).

Done only once
(at first access)

When using
NHibernate.Mapping.Attributes

When using XML
mapping file

39Basic configuration
By convention, NHibernate XML mapping files are named with the .hbm.xml exten-
sion. Another convention is to have one mapping file per class, rather than have all
your mappings listed in one file (which is possible but considered bad style). The
“Hello World” example had only one persistent class. But let’s assume you have multi-
ple persistent classes, with an XML mapping file for each. Where should you put these
mapping files?
WORKING WITH MAPPING FILES

The NHibernate documentation recommends that the mapping file for each persis-
tent class be placed in the same directory as that class file. For instance, the mapping
file for the Employee class would be placed in a file named Employee.hbm.xml in the
same directory as the file Employee.cs. If you had another persistent class, it would be
defined in its own mapping file. We suggest that you follow this practice and that you
load multiple mapping files by calling AddXmlFile().

 It’s even possible to embed XML mapping files inside .NET assemblies. You have to
tell the compiler that each of these files is an embedded resource; most IDEs allow you
to specify this option. Then you can use the AddClass() method, passing the class’s
type as the parameter:

ISessionFactory sessionFactory = new Configuration()
 .Configure()
 .AddClass(typeof(Model.Item))
 .AddClass(typeof(Model.User))
 .AddClass(typeof(Model.Bid))
 .BuildSessionFactory();

Method chaining
Method chaining is a programming style supported by many NHibernate interfaces
(they’re also called fluent interfaces). This style is more popular in Smalltalk than in
.NET and is considered by some people to be less readable and more difficult to de-
bug than the more accepted .NET style, but it’s convenient in most cases.

Most .NET developers declare setter or adder methods to be of type void, meaning
they return no value. In Smalltalk, which has no void type, setter and adder methods
usually return the receiving object. This would let you rewrite the previous code exam-
ple as follows:

 ISessionFactory sessionFactory = new Configuration()
 .Configure()
 .AddXmlFile("Employee.hbm.xml")
 .BuildSessionFactory();

Notice that you don’t need to declare a local variable for the Configuration.

We use this style in some code examples; but if you don’t like it, you don’t need to
use it. If you do use this coding style, it’s better to write each method invocation on
a different line. Otherwise, it may be difficult to step through the code in your debugger.

40 CHAPTER 2 Hello NHibernate!
The AddClass() method assumes that the name of the mapping file ends with the
.hbm.xml extension and is embedded in the same assembly as the mapped class file.

 If you want to add all mapped classes (with .NET attributes) in an assembly, you can
use an overload of the method HbmSerializer.Serialize(); or, if you want to add all
mapping files embedded in an assembly, you can use the method AddAssembly():

ISessionFactory sessionFactory = new Configuration()
 .Configure()
 .AddInputStream(// .NET Attributes
 HbmSerializer.Default.Serialize(typeof(Model.Item).Assembly))
 .AddAssembly(typeof(Model.Item).Assembly) // XML
 .BuildSessionFactory();

Note that it’s error-prone to use assemblies’ names (like "NHibernate.Auction").
That’s why you use one class’s type to directly retrieve the assembly containing the
embedded mapping files.

MULTIPLE DATABASES AND SESSION FACTORIES

We’ve demonstrated the creation of a single SessionFactory, which is all that most
applications need. If you need another ISessionFactory instance—in the case of
multiple databases, for example—repeat the process. Each SessionFactory is then
available for one database and ready to produce ISession instances to work with that
particular database and a set of class mappings. Once you have your SessionFactory,
you can go on to create sessions, and start loading and saving objects.
CONFIGURATION TECHNIQUES

Of course, there is more to configuring NHibernate than pointing to mapping docu-
ments. You also need to specify how database connections are to be obtained, along

Why does NHibernate say it doesn’t know your class?
A common issue when starting to use NHibernate is making sure all your mappings
are sent to NHibernate; if you miss one, you’ll get an exception. When building the
session factory, it will be a MappingException with a comment containing ... refers
to an unmapped class: YourClass. When executing a query, it will be a QueryException
with a comment like possibly an invalid or unmapped class name was used in the query.

To solve this issue, the first step is to set log4net to the INFO level (you’ll learn how
to do that in section 3.3.2). Then read the log to make sure NHibernate read your
mappings; you should find a message like Mapping class: Namespace.YourClass ->
YourClass. If it isn’t the case, then check your initialization code to make sure you
included the mappings.

If you use AddAssembly(), make sure the hbm.xml files are embedded in your
assembly.

On the other hand, you may get a DuplicateMappingException if you add a map-
ping many times. For example, avoid adding both the XML and the attributes-based
mapping.

41Basic configuration
with various other settings that affect the behavior of NHibernate at runtime. The mul-
titude of configuration properties may appear overwhelming (a complete list appears
in the NHibernate documentation), but don’t worry; most define reasonable default
values, and only a handful are commonly required.

 To specify configuration options, you may use any of the following techniques:

■ Pass an instance of System.Collections.IDictionary to Configuration.
SetProperties(), or use Configuration.SetProperty() for each property (or
manipulate the collection Configuration.Properties directly).

■ Set all properties in application configuration file (App.config or Web.config).
■ Include <property> elements in an XML file called hibernate.cfg.xml in the

current directory.

The first option is rarely used except for quick testing and prototypes, but most appli-
cations need a fixed configuration file. Both the application configuration file and the
hibernate.cfg.xml file provide the same function: to configure NHibernate. Which file
you choose to use depends on your syntax preference. hibernate.cfg.xml is the file-
name chosen by convention. You can use any filename (such as NHibernate.config,
because .config files are automatically protected by ASP.NET when deployed) and pro-
vide this filename to the Configure() method. It’s even possible to mix both options
and have different settings for development and deployment.

 A rarely used alternative option is to let the application provide an ADO.NET IDb-
Connection when it opens an NHibernate ISession from the SessionFactory (for
example, by calling sessionFactory.OpenSession(myConnection)). Using this option
means you don’t have to specify any database-connection properties (the other prop-
erties are still required). We don’t recommend this approach for new applications that
can be configured to use the environment’s database-connection infrastructure.

 Of all the configuration options, database-connection settings are the most
important because, without them, NHibernate won’t know how to correctly talk to
the database.

2.3.2 Configuring the ADO.NET database access

Most of the time, the application is responsible for obtaining ADO.NET connections.
NHibernate is part of the application, so it’s responsible for getting these connections.
You tell NHibernate how to get (or create new) ADO.NET connections.

 Figure 2.2 shows how .NET applications interact with ADO.NET. Without NHiber-
nate, the application code usually receives an ADO.NET connection from the connec-
tion pool (which is configured transparently) and uses it to execute SQL statements.

.NET Environment

Database

Connection

Pool

User-managed
ADO.NET connections

ASP.NET

Service
Windows

Application

Figure 2.2 Direct access
to ADO.NET connections

42 CHAPTER 2 Hello NHibernate!
With NHibernate, the picture changes: NHibernate acts as a client of ADO.NET and its
connection pool, as shown in figure 2.3. The application code uses the NHibernate
ISession and IQuery APIs for persistence operations and only has to manage data-
base transactions, ideally using the NHibernate ITransaction API.
CONFIGURING NHIBERNATE USING HIBERNATE.CFG.XML

Listing 2.6 uses a file named hibernate.cfg.xml to configure NHibernate to access a
Microsoft SQL Server 2000 database.

<?xml version="1.0" ?>
<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.provider">
 NHibernate.Connection.DriverConnectionProvider
 </property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2000Dialect
 </property>
 <property name="connection.driver_class">
 NHibernate.Driver.SqlClientDriver
 </property>
 <property name="connection.connection_string">
 Data Source=(local); Initial Catalog=nhibernate;
 Integrated Security=SSPI
 </property>
 </session-factory>
</hibernate-configuration>

This code’s lines specify the following information:

■ connection.provider specifies the name of the .NET class implementing the
IConnectionProvider interface; here, we use the default one.

■ dialect specifies the name of the .NET class implementing the database Dia-
lect. Dialects are how NHIbernate can take advantage of database-specific fea-
tures. Despite the ANSI standardization effort, SQL is implemented differently
by various databases vendors. You must specify a Dialect. NHibernate includes
built-in support for most popular SQL databases, and new dialects may be
defined easily.

Listing 2.6 Using hibernate.cfg.xml to configure NHibernate

ASP.NET

Service
Windows

Application

NHibernate

Database

Connection

Pool

ISession

ITransaction

IQuery

.NET Environment

Figure 2.3 NHibernate
managing database access

43Basic configuration
■ connection.driver_class specifies the name of the .NET class implementing
the ADO.NET Driver. Note when using the partial name of a driver that is in the
global assembly cache (GAC), you have to add a <qualifyAssembly> element in
the application configuration file to specify its fully qualified name so that NHi-
bernate can successfully load it.

■ connection.connection_string specifies a standard ADO.NET connection
string, used to create a database connection.

Note that these names (except the ConnectionString) should be fully qualified type
names; they aren’t here because they’re implemented in the NHibernate.dll library,
which is where the .NET framework looks for non–fully qualified types when NHiber-
nate tries to load them.
STARTING NHIBERNATE

How do you start NHibernate with these properties? You declared the properties in a
file named hibernate.cfg.xml, so you need only place this file in the application’s
directory. It’s automatically detected and read when you create a Configuration
object and call its Configure() method.

 Let’s summarize the configuration steps you’ve learned so far (this is a good time
to download and install NHibernate):

1 If your database’s ADO.NET data provider isn’t yet installed, download and
install it; it’s usually available from the database vendor website. If you’re using
SQL Server, then you can skip this step.

2 Add log4net.dll as reference to your project. This is optional but recom-
mended.

3 Decide which database-access properties NHibernate will need.
4 Let the Configuration know about these properties by placing them in a hiber-

nate.cfg.xml file in the current directory.
5 Create an instance of Configuration in your application, call the Configure()

method; load the mapped classes (with .NET attributes) using HbmSerializer.
Default.Serialize() and AddInputStream(); and load the XML mapping files
using either AddAssembly(), AddClass(), or AddXmlFile(). Build an ISession-
Factory instance from the Configuration by calling BuildSessionFactory().

6 Remember to close the instance of ISessionFactory (using MySessionFac-
tory.Close()) when you’re done using NHibernate. Most of the time, you’ll do
it while closing your application.

There are a few more steps when you use COM+ Enterprise Services; you’ll learn more
about them in chapter 6. Don’t worry; NHibernate code can be easily integrated into
COM+ with only a few additions.

 You should now have a running NHibernate system. Create and compile a persistent
class (the initial Employee, for example), add references to NHibernate.dll, log4net, and
NHibernate.Mapping.Attributes in your project, put a hibernate.cfg.xml file in the
application current directory, and build an ISessionFactory instance.

44 CHAPTER 2 Hello NHibernate!
 The next section covers advanced NHibernate configuration options. Some of
them are recommended, such as logging executed SQL statements for debugging, and
using the convenient XML configuration file instead of plain properties. But if you
wish, you may safely skip this section and come back later once you’ve read more
about persistent classes in chapter 3.

2.4 Advanced configuration settings
When you finally have an NHibernate application running, it’s well worth getting to
know all the NHibernate configuration parameters. These parameters let you opti-
mize the runtime behavior of NHibernate, especially by tuning the ADO.NET interac-
tion (for example, using ADO.NET batch updates).

 We don’t bore you with these details now; the best source of information about
configuration options is the NHibernate reference documentation. In the previous
section, we showed you the options you need to get started.

 But there is one parameter we must emphasize at this point. You’ll need it continu-
ally when you develop software with NHibernate. Setting the property show_sql to the
value true enables logging of all generated SQL to the console. You’ll use it for trou-
bleshooting, performance tuning, and just to see what’s going on. It pays to be aware
of what your ORM layer is doing—that’s why ORM doesn’t hide SQL from developers.

 So far, we’ve assumed that you specify configuration parameters using a hiber-
nate.cfg.xml file or programmatically using the collection Configuration.Proper-
ties. You may also specify these parameters using the application configuration file
(web.config, app.config, and so on).

2.4.1 Using the application configuration file

You can use the application configuration file to fully configure an ISessionFactory
instance (as demonstrated in listings 2.7 and 2.8). The application configuration file
can contain either configuration parameters using an <nhibernate> section, or the
same content as hibernate.cfg.xml file (using a <hibernate-configuration> section).
Many users prefer to centralize the configuration of NHibernate this way instead of
adding parameters to the Configuration in application code.

<?xml version="1.0" ?>
<configuration>
 <configSections>
 <section name="nhibernate"
 type="System.Configuration.NameValueSectionHandler,
 System, Version=1.0.5000.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" />
 <section name="log4net"
 type="log4net.Config.Log4NetConfigurationSectionHandler,log4net" />
 </configSections>

 <nhibernate>

Listing 2.7 App.config configuration file using <nhibernate>

B NHibernate
section
declaration

45Advanced configuration settings
 <add
 key="hibernate.connection.provider"
 value="NHibernate.Connection.DriverConnectionProvider"
 />
 <add
 key="hibernate.dialect"
 value="NHibernate.Dialect.MsSql2000Dialect"
 />
 <add
 key="hibernate.connection.driver_class"
 value="NHibernate.Driver.SqlClientDriver"
 />
 <add
 key="hibernate.connection.connection_string"
 value="initial catalog=nhibernate;Integrated Security=SSPI"
 />
 </nhibernate>

 <!-- log4net configuration settings here... -->
</configuration>

The NHibernate section is declared B as a series of key/value entries. The key is the
name of the property to set C. You’ll learn about log4net D in the next section.

 It’s recommended that you use a <hibernate-configuration> section, as shown
in listing 2.8.

<?xml version="1.0" ?>
<configuration>
 <configSections>
 <section name="hibernate-configuration"
 type="NHibernate.Cfg.ConfigurationSectionHandler,NHibernate" />
 <section name="log4net"
 type="log4net.Config.Log4NetConfigurationSectionHandler,log4net" />
 </configSections>

 <hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.provider">
 NHibernate.Connection.DriverConnectionProvider
 </property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2000Dialect
 </property>
 <property name="connection.driver_class">
 NHibernate.Driver.SqlClientDriver
 </property>
 <property name="connection.connection_string">
 Initial Catalog=nhibernate;Integrated Security=SSPI
 </property>
 </session-factory>
 </hibernate-configuration>

 <!-- log4net configuration settings here... -->
</configuration>

Listing 2.8 App.config configuration file using <hibernate-configuration>

CProperty
specifications

Log4net settings
could go here

D

CProperty
specifications

BHibernate configuration
section declaration

46 CHAPTER 2 Hello NHibernate!
Now, B declares a <hibernate-configuration>, as in hibernate.cfg.xml, which is
based on the schema nhibernate-configuration.xsd. The value is inside the <prop-
erty> tag C.

 This way is far more elegant and powerful, because you can also specify assemblies/
mapping documents. And you can configure an IDE like Visual Studio to provide Intel-
liSense inside the <hibernate-configuration> section: copy the configuration schema
file (nhibernate-configuration.xsd) in the subdirectory \Common7\Packages\schemas\
xml\ of the Visual Studio installation directory. You can also configure the mapping
schema file (nhibernate-mapping.xsd) to have IntelliSense when editing mapping files.
You can find these files in NHibernate’s source code.

 Note that you can use a <connectionStrings> configuration-file element to define
a connection string and then give its name to NHibernate using the hibernate.
connection.connection_string_name property.

 Now you can initialize NHibernate as follows:

ISessionFactory sessionFactory = new Configuration()
 .Configure()
 .BuildSessionFactory();

Wait—how does NHibernate know where the configuration file is located?
 When Configure() is called, NHibernate first searches for the information in the

application configuration file and then in a file named hibernate.cfg.xml in the cur-
rent directory. If you wish to use a different filename or have NHibernate look in a
subdirectory, you must pass a path to the Configure() method:

ISessionFactory sessionFactory = new Configuration()
 .Configure("NHibernate.config")
 .BuildSessionFactory();

Using an XML configuration file is more comfortable than using a programmatic con-
figuration. The fact that you can have the class-mapping files externalized from the
application’s source (even if it’s only in a startup helper class) is a major benefit of this
approach. You can, for example, use different sets of mapping files (and different con-
figuration options) depending on your database and environment (development or
production), and switch them programmatically.

 If you have both an application configuration file and hibernate.cfg.xml in the
current directory, the application configuration file’s settings are used.

NOTE You can give the ISessionFactory a name. This name is specified as an
attribute like this: <session-factory name="MySessionFactory">. NHi-
bernate uses this name to identify the instance after creation. You can use
the static method NHibernate.Impl.SessionFactoryObjectFactory.
GetNamedInstance() to retrieve it. This feature may be useful when
you’re sharing a SessionFactory between loosely coupled components.
But it’s seldom used because, most of the time, it’s better to hide NHiber-
nate behind the persistence layer.

Now that you have a functional NHibernate application, you’ll start encountering run-
time errors. To ease the debugging process, you need to log NHibernate operations.

47Advanced configuration settings
2.4.2 Logging

NHibernate (and many other ORM implementations) defers the execution of SQL
statements. An INSERT statement isn’t usually executed when the application calls
ISession.Save(); an UPDATE isn’t immediately issued when the application calls
Item.AddBid(). Instead, the SQL statements are generally issued at the end of a trans-
action. This behavior is called write-behind, as we mentioned earlier.

 This fact is evidence that tracing and debugging ORM code is sometimes nontriv-
ial. In theory, it’s possible for the application to treat NHibernate as a black box and
ignore this behavior. The NHibernate application can’t detect this write-behind (at
least, not without resorting to direct ADO.NET calls).

 But when you find yourself troubleshooting a difficult problem, you need to
be able to see exactly what’s going on inside NHibernate. Because NHibernate is
open source, you can easily step into the NHibernate code. Occasionally, doing so
helps a great deal. But especially in the face of write-behind behavior, debugging
NHibernate can quickly get you lost. You can use logging to obtain a view of NHiber-
nate’s internals.

 We’ve mentioned the show_sql configuration parameter, which is usually the first
port of call when troubleshooting. Sometimes the SQL alone is insufficient; in that
case, you must dig a little deeper.

 NHibernate logs all interesting events using the open source library log4net. To see
any output from log4net, you need to add some information in your application con-
figuration file. The example in listing 2.9 directs all log messages to the console.

<?xml version="1.0" ?>
<configuration>
 <configSections>
 <section
 name="log4net"
 type="log4net.Config.Log4NetConfigurationSectionHandler,log4net"
 />
 </configSections>

 <log4net>
 <appender name="ConsoleAppender"
 type="log4net.Appender.ConsoleAppender, log4net">
 <layout type="log4net.Layout.PatternLayout, log4net">
 <param name="ConversionPattern" value="%m" />
 </layout>
 </appender>
 <root>
 <priority value="WARN" />
 <appender-ref ref="ConsoleAppender" />
 </root>
 </log4net>
</configuration>

You can easily merge this file with listing 2.8. With this configuration, you won’t see
many log messages at runtime.

Listing 2.9 Basic configuration of log4net

48 CHAPTER 2 Hello NHibernate!
 Replacing the priority value WARN with INFO or DEBUG reveals the inner workings of
NHibernate. Make sure you don’t do this in a production environment—writing the
log will be much slower than the actual database access. We don’t give more details
about log4net configuration here; feel free to read its documentation.

 In this section, we talked about database-access configuration. This configuration
is useless if NHibernate doesn’t know how to manipulate your entities. The next chap-
ter covers NHibernate mapping.

2.5 Summary
In this chapter, we took a high-level look at NHibernate and its architecture after run-
ning a simple “Hello World” example. You also saw how to configure NHibernate in
various environments and with various techniques.

 The Configuration and SessionFactory interfaces are the entry points to NHi-
bernate for applications running in both WinForms and ASP.NET environments.
Hibernate can be integrated into almost every .NET environment, be it a console
application, an ASP.NET application, or a fully managed three-tiered client/server
application. The most important elements of an NHibernate configuration are the
database resources (connection configuration), the transaction strategies, and, of
course, the XML-based mapping metadata.

 NHibernate’s configuration interfaces have been designed to cover as many usage
scenarios as possible while still being easy to understand. Usually, a few modifications to
your .config file and one line of code are enough to get NHibernate up and running.

 None of this is much use without some persistent classes and their XML mapping
documents. The next chapter is dedicated to writing and mapping persistent classes.
You’ll soon be able to store and retrieve persistent objects in a real application with a
nontrivial object/relational mapping.

Part 2

NHibernate deep dive

This part of the book explains the essential knowledge needed for working
with NHibernate. Starting with a complete application, we walk you through the
steps needed to design, implement, and optimize NHibernate applications. This
section also gives you expertise in some of the less-understood parts of NHiber-
nate, which will help you succeed with even the most complex projects.

Writing and
 mapping classes
The “Hello World” example in chapter 2 gave a gentle introduction to NHibernate;
but we need a more thorough example to demonstrate the needs of real-world appli-
cations with complex data models. For the rest of the book, we explore NHibernate
using a more sophisticated example application—an online auction system.

 We start our discussion of the application by introducing a programming model
for persistent classes.

 First, you’ll learn how to identify the business objects (or entities) of a problem
domain. You’ll create a conceptual model of these entities and their attributes,
called a domain model. You’ll implement this domain model in C# by creating a per-
sistent class for each entity, and we’ll spend some time exploring what these .NET
classes should look like.

This chapter covers
■ POCO basics for rich domain models
■ The concept of object identity and its mapping
■ Mapping class inheritance
■ Association and collection mappings
51

52 CHAPTER 3 Writing and mapping classes
 You’ll then define mapping metadata to tell NHibernate how these classes and their
properties relate to database tables and columns. We covered the basis of this step in
chapter 2. In this chapter, we give an in-depth presentation of the mapping tech-
niques for fine-grained classes, object identity, inheritance, and associations. This
chapter therefore provides the beginnings of a solution to the first generic problems
of ORM listed in section 1.3.1. For example, how do you map fine-grained objects to
simple tables? Or how do you map inheritance hierarchies to tables?

 We start by introducing the example application.

3.1 The CaveatEmptor application
The CaveatEmptor online auction application demonstrates ORM techniques and NHi-
bernate functionality; you can download the source code for the entire working appli-
cation from the website http://caveatemptor.hibernate.org/. The application will have
a console-based user interface. We don’t pay much attention to the user interface; we
concentrate on the data-access code. In chapter 8, we discuss the changes that would be
necessary if you were to perform all business logic and data access from a separate busi-
ness tier. And in chapter 10, we discuss many solutions to common issues that arise
when integrating NHibernate in Windows and web applications.

 But let’s start at the beginning. In order to understand the design issues involved
in ORM, let’s pretend the CaveatEmptor application doesn’t yet exist and that you’re
building it from scratch. Your first task is analysis.

3.1.1 Analyzing the business domain

A software development effort begins with analysis of the problem domain (assuming
that no legacy code or legacy database already exists).

 At this stage, you, with the help of problem domain experts, identify the main enti-
ties that are relevant to the software system. Entities are usually notions understood by
users of the system: Payment, Customer, Order, Item, Bid, and so forth. Some entities
may be abstractions of less concrete things the user thinks about (for example,
PricingAlgorithm), but even these are usually understandable to the user. All these
entities are found in the conceptual view of the business, which we sometimes call a
business model.

 Developers of object-oriented software analyze the business model and create an
object model, still at the conceptual level (no C# code). This object model may be as
simple as a mental image existing only in the mind of the developer, or it may be as
elaborate as a UML class diagram (as in figure 3.1) created by a Computer-Aided Soft-
ware Engineering (CASE) tool like Microsoft Visio, Sparx Systems Enterprise Archi-
tect, or UMLet.

 This simple model contains entities that you’re bound to find in any typical auction
system: Category, Item, and User. The entities and their relationships (and perhaps

sells0..* 0..*Category Item User Figure 3.1 A class diagram of a
typical online auction object model

http://caveatemptor.hibernate.org/

53The CaveatEmptor application
their attributes) are all represented by this model of the problem domain. We call this
kind of model—an object-oriented model of entities from the problem domain,
encompassing only those entities that are of interest to the user—a domain model. It’s an
abstract view of the real world. We’ll refer to this model when you implement your per-
sistent .NET classes.

 Let’s examine the outcome of the analysis of the the CaveatEmptor application’s
problem domain.

3.1.2 The CaveatEmptor domain model

The CaveatEmptor site auctions many different kinds of items, from electronic equip-
ment to airline tickets. Auctions proceed according to the “English auction” model:
users continue to place bids on an item until the bid period for that item expires, and
the highest bidder wins.

 In any store, goods are categorized by type and grouped with similar goods into
sections and onto shelves. Your auction catalog requires some kind of hierarchy of
item categories. A buyer may browse these categories or arbitrarily search by category
and item attributes. Lists of items appear in the category browser and search-result
screens. Selecting an item from a list takes the buyer to an item-detail view.

 An auction consists of a sequence of bids. One particular bid is the winning bid.
User details include name, login, address, email address, and billing information.

 A web of trust is an essential feature of an online auction site. The web of trust allows
users to build a reputation for trustworthiness (or untrustworthiness). Buyers may cre-
ate comments about sellers (and vice versa), and the comments are visible to all other
users.

 A high-level overview of the domain model is shown in figure 3.2. Let’s briefly dis-
cuss some interesting features of this model.

Amount : double
Created : DateTime

Rating : int
Text : string
Created : DateTime

Street : string
Zipcode : string
City : string

Owner : string
Number : string
Created : DateTime

Type : int
ExpMonth : string
ExpYear : string

BankName : string
BankSwift : string

Name : string

Name : string
Description : string
InitialPrice : double
ReservePrice : double
StartDate : DateTime
EndDate : DateTime
Created : DateTime

Firstname : string
Lastname : string
Username : string
Password : string
Email : string
Ranking : int
Created : DateTime

Figure 3.2 Persistent classes of the CaveatEmptor object model and their relationships

54 CHAPTER 3 Writing and mapping classes
Each item may be auctioned only once, so you don’t need to make Item distinct
from the Auction entities. Instead, you have a single auction item entity named
Item. Bid is associated directly with Item. Users can write Comments about other users
only in the context of an auction; hence the association between Item and Comment.
The Address information of a User is modeled as a separate class, even though the
User may have only one Address. You do let the user have multiple Billing-
Details. The various billing strategies are represented as subclasses of an abstract
class (allowing future extension).

 A Category may be nested inside another Category. This is expressed by a recursive
association from the Category entity to itself. Note that a single Category may have
multiple child categories, but at most one parent category. Each Item belongs to at
least one Category.

 The entities in a domain model should encapsulate state and behavior. For exam-
ple, the User entity should define the name and address of a customer and the logic
required to calculate the shipping costs for items (to this particular customer). This
domain model is a rich object model, with complex associations, interactions, and
inheritance relationships. An interesting and detailed discussion of object-oriented
techniques for working with domain models can be found in Patterns of Enterprise Appli-
cation Architecture [Fowler 2003] or Domain-Driven Design [Evans 2004].

 In this book, we don’t have much to say about business rules or the behavior of the
domain model. This isn’t because we consider them unimportant concerns; rather,
they’re mostly orthogonal to the problem of persistence. It’s the state of your entities
that is persistent. So we concentrate our discussion on how to best represent state in
your domain model, not on how to represent behavior. For example, in this book, we
aren’t interested in how tax for sold items is calculated or how the system might
approve a new user account. We’re more interested in how the relationship between
users and the items they sell is represented and made persistent.

 Now that you have a domain model, the next step is to implement it in C#. Let’s
look at some of the things you need to consider.

Can you use ORM without a domain model?
We stress that object persistence with full ORM is most suitable for applications
based on a rich domain model. If your application doesn’t implement complex busi-
ness rules or complex interactions between entities (or if you have few entities), you
may not need a domain model. Many simple and some not-so-simple problems are
perfectly suited to table-oriented solutions, where the application is designed around
the database data model instead of around an object-oriented domain model, often
with logic executed in the database (stored procedures). But the more complex and
expressive your domain model, the more you’ll benefit from using NHibernate; it
shines when dealing with the full complexity of object/relational persistence.

55Implementing the domain model
3.2 Implementing the domain model
Several issues typically must be addressed when you implement a domain model. For
instance, how do you separate the business concerns from the cross-cutting concerns
(such as transactions and even persistence)? What kind of persistence is needed: auto-
mated or transparent? Do you have to use a specific programming model to achieve
this? In this section, we examine these types of issues and how to address them in a
typical NHibernate application.

 Let’s start with an issue that any implementation must deal with: the separation of
concerns. The domain-model implementation is usually a central, organizing compo-
nent; it’s reused heavily whenever you implement new application functionality. For
this reason, you should be prepared to go to some lengths to ensure that concerns
other than business aspects don’t leak into the domain model implementation.

3.2.1 Addressing leakage of concerns

The domain-model implementation is such an important piece of code that it
shouldn’t depend on other .NET APIs. For example, code in the domain model
shouldn’t perform input/output operations or call the database via the ADO.NET API.
This allows you to reuse the domain model implementation virtually anywhere. Most
important, it makes it easy to unit-test the domain model (in NUnit, for example) out-
side of any application server or other managed environment.

 We say that the domain model should be “concerned” only with modeling the busi-
ness domain. But there are other concerns, such as persistence, transaction manage-
ment, and authorization. You shouldn’t put code that addresses these cross-cutting
concerns in the classes that implement the domain model. When these concerns start
to appear in the domain model classes, we call this an example of leakage of concerns.

 The DataSet doesn’t address this problem. It can’t be regarded as a domain model
mainly because it isn’t designed to include business rules.

 Much discussion has gone into the topic of persistence, and both NHibernate and
DataSets take care of that concern. But NHibernate offers something that DataSets
don’t: transparent persistence.

3.2.2 Transparent and automated persistence

A DataSet allows you to extract the changes performed on it in order to persist them.
NHibernate provides a different feature, which is sophisticated and powerful: it can
automatically persist your changes in a way that is transparent to your domain model.

 We use transparent to mean a complete separation of concerns between the persis-
tent classes of the domain model and the persistence logic itself, where the persistent
classes are unaware of—and have no dependency on—the persistence mechanism.

 The Item class, for example, won’t have any code-level dependency to any NHiber-
nate API. Furthermore:

56 CHAPTER 3 Writing and mapping classes
■ NHibernate doesn’t require that any special base classes or interfaces be inher-
ited or implemented by persistent classes. Nor are any special classes used to
implement properties or associations. Thus, transparent persistence improves
code readability, as you’ll soon see.

■ Persistent classes may be reused outside the context of persistence—in unit
tests or in the user interface (UI) tier, for example. Testability is a basic require-
ment for applications with rich domain models.

■ In a system with transparent persistence, objects aren’t aware of the underlying
data store; they need not even be aware that they’re being persisted or
retrieved. Persistence concerns are externalized to a generic persistence manager
interface—in the case of NHibernate, the ISession and IQuery interfaces.

Transparent persistence fosters a degree of portability; without special interfaces, the
persistent classes are decoupled from any particular persistence solution. Your busi-
ness logic is fully reusable in any other application context. You could easily change to
another transparent persistence mechanism.

 By this definition of transparent persistence, certain non-automated persistence
layers are transparent (for example, the DAO pattern) because they decouple the per-
sistence-related code with abstract programming interfaces. Only plain .NET classes
without dependencies are exposed to the business logic. Conversely, some automated
persistence layers (like many ORM solutions) are non-transparent, because they
require special interfaces or intrusive programming models.

 We regard transparency as required. Transparent persistence should be one of the
primary goals of any ORM solution. But no automated persistence solution is com-
pletely transparent: every automated persistence layer, including NHibernate, imposes
some requirements on the persistent classes. For example, NHibernate requires that
collection-valued properties be typed to an interface such as IList or IDictionary
(or their .NET 2.0 generic versions) and not to an actual implementation such as
ArrayList (this is a good practice anyway). (We discuss the reasons for this require-
ment in appendix B, “Going forward.”)

 You now know why the persistence mechanism should have minimal impact on
how you implement a domain model and that transparent and automated persistence
are required. DataSet isn’t suitable here, so what kind of programming model should
you use? Do you need a special programming model at all? In theory, no; in practice,
you should adopt a disciplined, consistent programming model that is well accepted
by the .NET community. Let’s discuss this programming model and see how it works
with NHibernate.

3.2.3 Writing POCOs

Developers have found DataSets to be unnatural for representing business objects in
many situations. The opposite of a heavy model like DataSet is the Plain Old CLR Object

57Implementing the domain model
(POCO). It’s a back-to-basics approach that essentially consists of using unbound
classes in the business layer.1

 When you’re using NHibernate, entities are implemented as POCOs. The few
requirements that NHibernate imposes on your entities are also best practices for the
POCO programming model. Most POCOs are NHibernate-compatible without any
changes. The programming model we introduce is a non-intrusive mix of POCO best
practices and NHibernate requirements. A POCO declares business methods, which
define behavior, and properties, which represent state. Some properties represent asso-
ciations to other POCOs.

 Listing 3.1 shows a simple POCO class; it’s an implementation of the User entity of
the example domain model.

[Serializable]
public class User {
 private string username;
 private Address address;
 public User() {}
 public string Username {
 get { return username; }
 set { username = value; }
 }
 public Address Address {
 get { return address; }
 set { address = value; }
 }
 public MonetaryAmount CalcShipCosts(Address from) {
 // ...
 }
}

NHibernate doesn’t require persistent classes to be serializable (as this class is B). But
serializability is commonly needed, mainly when you’re using .NET remoting.

 NHibernate requires a default parameterless constructor for every persistent class C.
The constructor may be non-public, but it should be at least protected if runtime-
generated proxies will be used for performance optimization (see chapter 4). Note that
.NET automatically adds a public parameterless constructor to classes if you haven’t writ-
ten one in the code.

 The properties of the POCO implement the attributes of your business entities D.
For example, the User’s name Username provides access to the private userName
instance variable (the same is true for Address). NHibernate doesn’t require that
properties be declared public; it can easily use private ones too. Some properties do

1 The term POCO was derived from the Java term Plain Old Java Object (POJO). It’s sometimes written Plain Ordi-
nary Java Objects. The term was coined in 2002 by Martin Fowler, Rebecca Parsons, and Josh Mackenzie. As an
alternative to POCO, it’s also common to use the term PONO, which stands for Plain Old .NET Object.

Listing 3.1 POCO implementation of the User class

Serializable classB

Class constructorC

D Properties

Business
method

E

58 CHAPTER 3 Writing and mapping classes
something more sophisticated than simple instance variables access (validation, for
example), but trivial properties are common. Of course, if you’re using C# 3.0, you
can take advantage of the auto-implemented properties for these simple cases.

 This POCO also defines a business method E that calculates the cost of shipping
an item to a particular user (we left out the implementation of this method).

 Now that you understand the value of using POCO persistent classes as the pro-
gramming model, let’s see how you handle the associations between those classes.

3.2.4 Implementing POCO associations

You use properties to express associations between POCO
classes, and you use accessor methods to navigate the
object graph at runtime. Let’s consider the associations
defined by the Category class. The first association is
shown in figure 3.3.

 As with all our diagrams, we left out the association-
related attributes (parentCategory and childCatego-

ries) because they would clutter the illustration. These
attributes and the methods that manipulate their values
are called scaffolding code.

 Let’s implement the scaffolding code for the one-to-many self-association of Category:

public class Category : ISerializable {
 private string name;
 private Category parentCategory;
 private ISet childCategories = new HashedSet();
 public Category() { }
 //...
}

Note that you could use .NET 2.0 generics here by writing ISet<Category> child-
Categories. No other change would be required (even in the mapping).

 To allow bidirectional navigation of the association, you require two attributes.
The parentCategory attribute implements the single-valued end of the association and
is declared to be of type Category. The many-valued end, implemented by the child-
Categories attribute, must be of collection type. Here you use an ISet and initialize
the instance variable to a new instance of HashedSet.

 NHibernate requires interfaces for collection-typed attributes. You must, for exam-
ple, use ISet rather than HashedSet. At runtime, NHibernate wraps the collection
instance with an instance of one of NHibernate’s own classes. (This special class isn’t
visible to the application code.) It’s good practice to program to collection interfaces
rather than concrete implementations, so this restriction shouldn’t bother you.

 You now have some private instance variables but no public interface to allow
access from business code or property management by NHibernate. Let’s add some
properties to the Category class:

0..*
Category

Name : string

Figure 3.3 Diagram of the
Category class with an
association

59Implementing the domain model
public string Name {
 get { return name; }
 set { name = value; }
}
public ISet ChildCategories {
 get { return childCategories; }
 set { childCategories = value; }
}
public Category ParentCategory {
 get { return parentCategory; }
 set { parentCategory = value; }
}

Again, these properties need to be declared public only if they’re part of the external
interface of the persistent class, the public interface used by the application logic.

 The basic procedure for adding a child Category to a parent Category looks like
this:

Category aParent = new Category();
Category aChild = new Category();
aChild.ParentCategory = aParent;
aParent.ChildCategories.Add(aChild);

Whenever an association is created between a parent Category and a child Category,
two actions are required:

■ The parentCategory of the child must be set, effectively breaking the association
between the child and its old parent (there can be only one parent for any child).

■ The child must be added to the childCategories collection of the new parent
Category.

Used external library: Iesi.Collections
Java has a kind of collection called Set, which lets you store items without duplication
(that is, you can’t add the same object many times). But .NET doesn’t provide an equiv-
alent to this collection. NHibernate uses a library called Iesi.Collections, which
includes the interface ISet and many implementations (like HashedSet). Their be-
havior is similar to that of the IList, so you should be able to use them easily. We
frequently use Sets because their semantic fits with the requirement of our classes.

Managed relationships in NHibernate
NHibernate doesn’t “manage” persistent associations. If you want to manipulate an
association, you must write exactly the same code you would write without NHiber-
nate. If an association is bidirectional, both sides of the relationship must be consid-
ered. Anyway, this is required if you want to use your objects without NHibernate (for
testing or with the UI).

60 CHAPTER 3 Writing and mapping classes
If you ever have problems understanding the behavior of associations in NHibernate,
ask yourself, “What would I do without NHibernate?” NHibernate doesn’t change the
usual .NET semantics.

 It’s a good idea to add a convenience method to the Category class that groups
these operations, allowing reuse and helping ensure correctness:

public void AddChildCategory(Category childCategory) {
 if (childCategory.ParentCategory != null)
 childCategory.ParentCategory.ChildCategories
 .Remove(childCategory);
 childCategory.ParentCategory = this;
 childCategories.Add(childCategory);
}

The AddChildCategory() method not only reduces the lines of code when dealing
with Category objects, but also enforces the cardinality of the association. Errors that
arise from leaving out one of the two required actions are avoided. This kind of group-
ing of operations should always be provided for associations, if possible.

 Because you’d like the AddChildCategory() to be the only externally visible muta-
tor method for the child categories, you make the ChildCategories property private;
you may add more methods to access to ChildCategories if required. NHibernate
doesn’t care if properties are private or public, so you can focus on good API design.

 A different kind of relationship exists
between Category and the Item: a bidi-
rectional many-to-many association (see fig-
ure 3.4).

 In the case of a many-to-many associa-
tion, both sides are implemented with col-
lection-valued attributes. Let’s add the
new attributes and methods to access the
Item class to the Category class, as shown
in listing 3.2.

public class Category {
 //...
 private ISet items = new HashedSet();
 //...
 public ISet Items {
 get { return items; }
 set { items = value; }
 }
}

The code for the Item class (the other end of the many-to-many association) is similar
to the code for the Category class. You add the collection attribute, the standard
properties, and a method that simplifies relationship management (you can also add
this to the Category class; see listing 3.3).

Listing 3.2 Category-to-Item scaffolding code

Name : string

Name : string
Description : string
InitialPrice : double
ReservePrice : double
StartDate : DateTime
EndDate : DateTime
Created : DateTime

Figure 3.4 Category and the associated Item

61Implementing the domain model
public class Item {
 private string name;
 private string description;
 //...
 private ISet categories = new HashedSet();
 //...
 public ISet Categories() {
 get { return categories; }
 set { categories = value; }
 }
 public void AddCategory(Category category) {
 category.Items.Add(this);
 categories.Add(category);
 }
}

The AddCategory() method of the Item class is similar to the AddChildCategory()
convenience method of the Category class. It’s used by a client to manipulate the rela-
tionship between Item and a Category. For the sake of readability, we don’t show con-
venience methods in future code samples and assume you’ll add them according to
your own taste.

 You should now understand how to create classes to form your domain model; these
classes can be persisted by NHibernate. Also, you should be able to create associations
between these classes, using convenience methods where necessary to improve the
domain model. The next step is to further enrich the domain model by adding business
logic. We start by looking at how you can you can add logic to your properties.

3.2.5 Adding logic to properties

One of the reasons we like to use properties is that they provide encapsulation: you
can change a property’s hidden internal implementation without any changes to the
public interface. This lets you abstract a class’s internal data structure—the instance
variables—from the design of the database.

 For example, if your database stores a username as a single NAME column, but
your User class has firstname and lastname properties, you can add the following
persistent name property to your class:

public class User {
 private string firstname;
 private string lastname;
 //...
 public string Name {
 get { return firstname + ' ' + lastname; }
 set {
 string[] names = value.Split(' ');
 firstname = names[0];
 lastname = names[1];
 }
)
 //...
}

Listing 3.3 Item-to-Category scaffolding code

62 CHAPTER 3 Writing and mapping classes
Later, you’ll see that an NHibernate custom type is probably a better way to handle many
of these kinds of situations. But it helps to have several options.

 Properties can also perform validation. For instance, in the following example, the
FirstName property’s setter verifies that the name is capitalized:

public class User {
 private string firstname;
 //...
 public string Firstname {
 get { return firstname; }
 set {
 if (!StringUtil.IsCapitalizedName(firstname))
 throw new InvalidNameException(value);
 firstname = value;
)
 //...
}

NHibernate will later use your properties to populate the state of an object when load-
ing the object from the database. Sometimes you’d prefer that this validation not occur
when NHibernate is initializing a newly loaded object. In that case, it may make sense
to tell NHibernate to directly access the instance variables (you’ll see later that you can
do so by mapping the property with access="field" in NHibernate metadata), forcing
NHibernate to bypass the property and access the instance variable directly.

 Another issue to consider is dirty checking. NHibernate automatically detects object-
state changes in order to synchronize the updated state with the database. It’s usually
safe to return a different object from the get accessor to the object passed by NHiber-
nate to the set accessor. NHibernate compares the objects by value—not by object
identity—to determine whether the property’s persistent state needs to be updated.
For example, the following get accessor won’t result in unnecessary SQL UPDATEs:

public string Firstname {
 get { return new string(firstname); }
}

But there is one important exception. Collections are compared by identity!
 For a property mapped as a persistent collection, you should return exactly the

same collection instance from the get accessor as NHibernate passed to the set acces-
sor. If you don’t, NHibernate updates the database, even if no update is necessary, every
time the session synchronizes state held in memory with the database. This kind of
code should almost always be avoided in properties:

public IList Names {
 get { return new ArrayList(names); }
 set { names = new string[value.Count]; value.CopyTo(names, 0); }
}

NHibernate doesn’t unnecessarily restrict the POCO programming model. You’re free
to implement whatever logic you need in properties (as long as you keep the same col-
lection instance in both get and set accessors). Note that collections shouldn’t have a
setter at all.

63Defining the mapping metadata
 If absolutely necessary, you can tell NHibernate to use a different access strategy to
read and set the state of a property (for example, direct instance-field access), as you’ll
see later. This kind of transparency guarantees an independent and reusable domain
model implementation.

 At this point, you’ve defined a number of classes for your domain model and set
up some associations between them. You’ve also added convenience methods to make
working with the model easier, and added some business logic. Your next goal is to be
able to load and save objects in the domain model to and from a relational database.
We now need to look at setting up the necessary pieces to let NHibernate perist
objects—or, more specifically, object/relational mapping.

3.3 Defining the mapping metadata
ORM tools require a metadata format for the application to specify the mapping
between classes and tables, properties and columns, associations and foreign keys,
.NET types and SQL types. This information is called the object/relational mapping
metadata. It defines the transformation between the different data type systems and
relationship representations.

 It’s our job as developers to define and maintain this metadata. We can do this two
different ways: attributes and XML mapping files. In this section, you’ll learn how to write
mapping using these two approaches, and we’ll compare them so you can decide which
one to use. Let’s start with the mapping you’re familiar with: using .NET XML files.

3.3.1 Mapping using XML

NHibernate provides a mapping format based on the popular XML. Mapping docu-
ments written in and with XML are lightweight, are human readable, are easily hand-
editable, are easily manipulated by version-control systems and text editors, and
may be customized at deployment time (or even at runtime, with programmatic
XML generation).

 But is XML-based metadata a viable approach? A certain backlash against the over-
use of XML can be seen in the developer community. Every framework and service
seems to require its own XML descriptors.

 In our view, there are three main reasons for this backlash:

■ Many existing metadata formats weren’t designed to be readable and easy
to edit by hand. A major cause of pain is the lack of sensible defaults for
attribute and element values, requiring significantly more typing than should
be necessary.

■ Metadata-based solutions were often used inappropriately. Metadata isn’t by
nature more flexible or maintainable than plain C# code.

■ Good XML editors, especially in IDEs, aren’t as common as good .NET coding
environments. Worst, and most easily fixable, an XML Schema Definition (XSD)
often isn’t provided, preventing auto-completion and validation. Also problem-
atic are XSDs that are too generic, where every declaration is wrapped in a
generic extension of a meta element (like the key/value approach).

64 CHAPTER 3 Writing and mapping classes
There is no getting around the need for text-based metadata in ORM. But NHibernate
was designed with full awareness of the typical metadata problems. The metadata for-
mat is extremely readable and defines useful default values. When some values are
missing, NHibernate uses reflection on the mapped class to help determine the
defaults. NHibernate comes with a documented and complete XSD. Finally, IDE sup-
port for XML has improved lately, and modern IDEs provide dynamic XML validation
and even an auto-complete feature. If that’s not enough for you, in chapter 9 we dem-
onstrate some tools you can use to generate NHibernate XML mappings.

 Let’s look at the way you can use XML metadata in NHibernate. We introduced the
mapping of the Category class in a previous section; now we provide more details
about the structure of its XML mapping document shown in listing 3.4.

<?xml version="1.0"?>
<hibernate-mapping
 xmlns="urn:nhibernate-mapping-2.2"
 auto-import="true">

 <class
 name="CaveatEmptor.Model.Category, CaveatEmptor"
 lazy="false">

 <id name="Id">
 <generator class="native" />
 </id>

 <property
name="Name"
 column="name"/>

 <many-to-one
 name="ParentCategory"
cascade="all"/>
 </class>
</hibernate-mapping>

As you can see, an XML mapping document can be divided into many parts:

■ Mappings are declared inside a <hibernate-mapping> element B. You can
include as many class mappings as you like, along with certain other special dec-
larations that we mention later in the book.

■ The NHibernate mapping XSD is declared to provide syntactic validation of the
XML C, and many XML editors use it for auto-completion. But it isn’t recom-
mended that you use the online copy of this file, for performance reasons.

■ The Category class (in the assembly CaveatEmptor.Model) is mapped to the
table of the same name (Category) D. Every row in this table represents one
instance of type Category.

■ We haven’t discussed the concept of object identity much. This complex topic is
covered in section 3.5. To understand this mapping, it’s sufficient to know that
every record in the Category table will have a primary key value that matches

Listing 3.4 NHibernate XML mapping of the Category class

Mapping
declaration

B
XSD declaration
(optional)

C

Category class
mappingD

Identifier
mapping

E

Name property
mapping

F

Reference to
parent category

G

65Defining the mapping metadata
the object identity of the instance in memory. The <id> mapping element is
used to define the details of object identity E.

■ The Name property is mapped to a database column of the same name (Name) F.
NHibernate will use .NET reflection to discover the type of this property and
deduce how to map it to the SQL column, assuming they have compatible types.
Note that it’s possible to explicitly specify the mapping data type that NHibernate
should use. We take a close look at these types in section 7.1.

■ You use an association to link a Category to another. Here, it’s a many-to-one
association G. In the database, the Category table contains a ParentCategory
column that is a foreign key to another row in the same table. Association map-
pings are more complex, so we return to them in section 4.6.

Although it’s possible to declare mappings for multiple classes in one mapping file by
using multiple <class> elements, the recommended practice (and the practice
expected by some NHibernate tools) is to use one mapping file per persistent class.
The convention is to give the file the same name as the mapped class, appending an
hbm suffix: for example, Category.hbm.xml.

 Sometimes you may want to use .NET attributes rather than XML files to define
your mappings; next, we briefly explain how to do this. After that, we look more
closely at the nature of the class and property mappings described in this section.

3.3.2 Attribute-oriented programming

One way to define the mapping metadata is to use .NET attributes. Since its first
release,.NET has provided support for class/member attributes. In chapter 2, we intro-
duced the NHibernate.Mapping.Attributes library, which uses attributes directly
embedded in the .NET source code to provide all the information NHibernate needs
to map classes. All you have to do is to mark up the .NET source code of your persis-
tent classes with custom .NET attributes, as shown in listing 3.5.

using NHibernate.Mapping.Attributes;

[Class(Lazy=false)]
public class Category {
 //...
 [Id(Name="Id")]
 [Generator(1, Class="native")]
 public long Id {
 //...
 }
 //...
 [Property]
 public string Name {
 //...
 }
 //...
}

Listing 3.5 Mapping with NHibernate.Mapping.Attributes

66 CHAPTER 3 Writing and mapping classes
It’s easy to use this mapping with NHibernate:

cfg.AddInputStream(
 NHibernate.Mapping.Attributes.HbmSerializer.Default.Serialize(
 typeof(Category)));

Here, NHibernate.Mapping.Attributes generates an XML stream from the mapping
in the Category class, and this stream is sent to the NHibernate configuration. You can
also write this mapping information in external XML documents.

You should now have grasped the basic idea of how both XML mappings and attribute
mappings work. Next, we look more closely at the types of mappings in more detail,
starting with property and class mappings.

3.4 Basic property and class mappings
In this section, you’ll learn a number of features and tips that will help you write bet-
ter mappings. NHibernate can “guess” some information to make your mappings
shorter. It’s also possible to configure it to access your entities in a specific way.

 Let’s start with a deeper review of the mapping of simple properties.

3.4.1 Property mapping overview

A typical NHibernate property mapping defines a property name, a database column
name, and the name of an NHibernate type. It maps a .NET property to a table column.

XML mapping or .NET attributes?
We’ve introduced mapping using XML mapping files and using NHibernate.Map-
ping.Attributes. Although you can use both at the same time, it’s more common
(and homogenous) to use only one technique. Your choice is based on the way you
develop your application. You can read more details about development processes
in chapter 8.

For now, you have already realized that .NET attributes are much more convenient and
reduce the lines of metadata significantly. They’re also type-safe, support auto-
completion in your IDE as you type (like any other C# type), and make refactoring of
classes and properties easier. NHibernate.Mapping.Attributes is usually used
when starting a new project. Arguably, attribute mappings are less configurable at
deployment time. But nothing is stopping you from hand-editing the generated XML
before deployment, so this probably isn’t a significant objection.

On the other hand, XML mapping documents are external; this means that they can
evolve independently of your domain model; they’re also easier to manipulate for
complex mapping and they can contain some useful information (not directly related
to the mapping of the classes). It’s common to use XML mapping files when the
classes already exist and aren’t under our control.

Note that, in few cases, it’s better to write XML mapping; for example, when dealing
with a highly customized component or collection mapping. In these cases, you can
use the attribute [RawXml] to insert this XML in your attribute mapping.

67Basic property and class mappings
The basic declaration provides many variations and optional settings; for example, it’s
often possible to omit the type name. For example, if Description is a property of
(.NET) type String, NHibernate uses the NHibernate type String by default (we discuss
the NHibernate type system in chapter 7). NHibernate uses reflection to determine the
.NET type of the property. Thus, the following mappings are equivalent, as long as
they’re on the property Description:

[Property(Name="Description", Column="DESCRIPTION", Type="String")]
[Property(Column="DESCRIPTION")]
public string Description { ... }

These mapping can be written using XML. The following mappings are equivalent:

<property name="Description" column="DESCRIPTION" type="String"/>
<property name="Description" column="DESCRIPTION"/>

As you already know, you can omit the column name if it’s the same as the property
name, ignoring case. (This is one of the sensible defaults we mentioned earlier.)

 In some cases, you may need to tell NHibernate more about the database column
than just its name. For this, you can use the <column> element instead of the column
attribute. The <column> element provides more flexibility; it has more optional attri-
butes and may appear more than once. The following two property mappings
are equivalent:

[Property]
[Column(1, Name="DESCRIPTION")]
public string Description { ... }

Using XML, you can write

<property name="Description" type="String">
 <column name="DESCRIPTION"/>
</property>

Because .NET attributes aren’t ordered, you sometimes need to specify their position.
Here, [Column] comes after [Property], so its position is 1; the position of [Prop-
erty] is 0 (the default value).

 NHibernate.Mapping.Attributes mimics XML mapping, so if you can write one,
you can deduce how to write the other. The main difference is that you don’t need to
specify names with attribute mappings because NHibernate.Mapping.Attributes can
guess them based on where the attribute mappings are in the code. The exception is
[Id]; you must specify the identifier’s name when it has one, because it’s optional.

 The <property> element (and especially the <column> element) also defines cer-
tain attributes that apply mainly to automatic database-schema generation. If you
aren’t using the hbm2ddl tool (see section 10.1.1) to automatically generate the data-
base schema, you can safely omit these. But it’s still preferable to include at least the
not-null attribute, because NHibernate can then report illegal null property values
without going to the database:

<property name="InitialPrice" column="INITIAL_PRICE" not-null="true"/>

68 CHAPTER 3 Writing and mapping classes
Detection of illegal null values is mainly useful for providing sensible exceptions at
development time. It isn’t intended for true data validation, which is outside the scope
of NHibernate.

 Some properties don’t map to a column. In particular, a derived property takes its
value from a SQL expression.

3.4.2 Using derived properties

The value of a derived property is calculated at runtime by evaluating an expression.
You define the expression using the formula attribute. For example, for a Shopping-
Cart class, you might map a TotalIncludingTax property. Because it’s a formula,
there is no column to store that value in the database:

<property name="TotalIncludingTax"
 formula="TOTAL + TAX_RATE * TOTAL"
 type="Double"/>

The given SQL formula is evaluated every time the entity is retrieved from the data-
base. So the database does the calculation rather than the .NET object. The property
doesn’t have a column attribute (or sub-element) and never appears in a SQL INSERT
or UPDATE, only in SELECTs. Formulas may refer to columns of the database table, call
SQL functions, and include SQL subselects.

 This example, mapping a derived property of Item, uses a correlated subselect to
calculate the average amount of all bids for an item:

<property
 name="AverageBidAmount"
 formula="(select AVG(b.AMOUNT) from BID b
 where b.ITEM_ID = ITEM_ID)"
 type="Double"/>

Notice that unqualified column names (in this case, those not preceded by b). refer to
table columns of the class to which the derived property belongs.

 As we mentioned earlier, NHibernate doesn’t require properties on entities if you
define a new property-access strategy. The next section explains the various strategies
and when you should use them in your mapping.

3.4.3 Property access strategies

The access attribute allows you to specify how NHibernate should access values of the
entity. The default strategy, property, uses the property accessors—the getters and set-
ters you declare in your classes. In your mapping XML file, mapping a class property
getter and setter to a column is simple:

<property name="Description"/>

When NHibernate loads or saves an object, it always uses the defined getter and setter
to access the data in the object.

 In our “Hello World” example in chapter 2, you used the field access strategy in
the XML mapping file for the Employee entity. The field strategy is useful when you

69Basic property and class mappings
haven’t defined property getters and setters for your classes. Behind the scenes, it uses
reflection to access the instance class field directly. For example, the following prop-
erty mapping doesn’t require a getter/setter pair in the class because it’s using the
field access strategy:

<property name="name" access="field"/>

The field access strategy can be useful at times, but access through property getters
and setters is considered best practice by the NHibernate community; they give you an
extra level of abstraction between the .NET domain model and the data model beyond
that provided by NHibernate. Properties are also more flexible than fields; for exam-
ple, property definitions may be overridden by persistent subclasses.

 NHibernate gives you additional flexibility when working with properties. For
example, what if your property setters contain business logic? Often, you only want
this logic to be executed when your client code sets the property, not during load
time. If a class is mapped using a property setter, NHibernate runs the code as it loads
the object. Thankfully, there are ways to deal with this situation. NHibernate provides
a special access strategy called the nosetter.* strategy. Using this in your mapping
tells NHibernate to use the property getter when reading data from the object, but to
use the underlying field while writing data to it.

 If you need even more flexibility than this, you can learn about other access strate-
gies available in the NHibernate reference documentation online. As a sample, if you
want NHibernate not to use the getter if you use the standard way of naming fields in
C#—camelcase prefixed by an underscore (such as _firstName)—you can map it like
this, using NHibernate.Mapping.Attributes:

private string _firstName;

[Property(Access="field.camelcase-underscore")]
public string FirstName {
 get { return _firstName; }
}

The equivalent XML mapping is

<property name="FirstName" access="field.camelcase-underscore"/>

The nice side effect of this example is that, when writing NHibernate HQL queries, you
use the more readable property name rather than ugly field names. Behind the scenes,
NHibernate knows to bypass the property and instead use the field when loading and sav-
ing objects. Because you’re using a field, the property is effectively ignored—
it doesn’t even have to exist in the code! As a useful extra, if you want to do this for
all properties on a class, you can specify this access strategy at the class level by us-
ing <hibernate-mapping default-access="..."> or the property HbmSerializer.
HbmDefaultAccess when using NHibernate.Mapping.Attributes.

 If you still need more flexibility, you can define your own customized property-
access strategy by implementing the interface NHibernate.Property.IProperty-
Accessor; you name the class implementing your custom strategy in the access

70 CHAPTER 3 Writing and mapping classes
attribute (using its fully qualified name). With NHibernate.Mapping.Attributes, you
have the alternative of using

[Property(AccessType=typeof(MyPropertyAccessor))]

This facility (adding Type at the end of an element to provide a .NET type instead of a
string) is available in many other places.

 So far, you’ve learned how to build the classes for your domain model and how to
define mapping metadata to tell NHibernate how to persist these classes and their
members. NHibernate gives you a wealth of features and flexibility, but essentially
we’re talking about straightforward ORM capabilities. Next, we look at some under-
the-hood aspects of NHibernate, including the ability to disable its optimizer to assist
with debugging, the ability to enforce that objects are immutable by preventing NHi-
bernate from inserting and updating them, and a few other handy tricks that will help
you tackle thorny scenarios.

3.4.4 Taking advantage of the reflection optimizer

We mentioned that NHibernate can use reflection to get and set properties of an
entity at runtime. Reflection can be slow, so NHibernate goes a step further and uses
an optimizer to speed up this process. The optimizer is enabled by default and goes to
work as you create your session factories. Because of this, you suffer a small startup
cost, but it’s usually worth it.

 Depending on the version of .NET you’re using, NHibernate takes different
approaches to optimizing reflection.

 Under .NET 1.1, NHibernate uses a CodeDom provider. This provider generates special
classes at runtime that know about your business entities and that can access them with-
out using reflection. A small caveat is that it only works for public properties; you must
use the default property-access strategy in your mapping files to get optimal results.
Another restriction is that quoted SQL identifiers (section 3.4.6) aren’t supported.

 NHibernate 1.2 introduces another provider, which only works (and is used by
default) under .NET 2.0. This provider injects dynamic methods into your business enti-
ties at startup, and it’s more powerful because it isn’t restricted to public properties.

 It’s rarely necessary, but you can disable this reflection optimizer by updating your
configuration file:

<property name="hibernate.use_reflection_optimizer">false</property>

or, at runtime, using

Environment.UseReflectionOptimizer = false;

This may be helpful when debugging your application, because runtime-generated
classes are harder to trace. You must set this property before instantiating the
Configuration. You can’t use the <hibernate-configuration> section in your con-
fig file (hibernate.cfg.xml, web.config, and so on) because this is read after the Con-
figuration object is created (during the call to your Configuration object’s
Configure() method).

71Basic property and class mappings
 You can select the CodeDom provider using

<property name="hibernate.bytecode.provider">codedom</property>

The value codedom can be replaced by null (to disable the optimizer) or lcg (on
.NET 2.0 or later only). Note that codedom may not work properly with generic types.

 You must set this property in the <nhibernate> section of your application con-
figuration file. At runtime, before building the session factory, you can set the prop-
erty Environment.BytecodeProvider to the value returned by the static method
Environment.BuildBytecodeProvider() or to an instance of your own provider that
implements the interface NHibernate.Bytecode.IBytecodeProvider.

 The next interesting capability we look at is controlling database inserts
and updates for classes and their members. This level of control is useful when you
want to create immutable objects, or when you want to disable updates on a per-
property basis.

3.4.5 Controlling insertion and updates

You can control whether properties that map to columns appear in the INSERT state-
ment by using the insert attribute, and whether they appear in the UPDATE statement
by using the update attribute.

 The following property is never written to the database:

<property name="Name"
 column="NAME"
 type="String"
 insert="false"
 update="false"/>

The entity’s Name property is immutable; it can be read from the database but not
modified in any way. If the complete class is immutable, set the mutable="false" in
the class mapping. (If you’re unfamiliar with immutable classes, they’re basically
classes that you’ve decided should never be updated after they’ve been created. An
example might be a financial transaction record.)

 In addition, the dynamic-insert and dynamic-update attributes tell NHibernate
whether to include unmodified property values during SQL INSERTs and UPDATEs:

<class name="NHibernate.Auction.Model.User, NHibernate.Auction"
 dynamic-insert="true"
 dynamic-update="true">
 ...
</class>

These are both class-level settings that are off by default; when NHibernate generates
INSERT and UPDATE SQL for an object, it does so for all properties on the object
regardless of whether they’ve changed since the object was loaded. Enabling either of
these settings causes NHibernate to generate SQL at runtime instead of using the SQL
cached at startup time. The performance and memory cost of doing this is usually
small. Furthermore, leaving out columns in an insert (and especially in an update)
can occasionally improve performance if your tables define many/large columns.

72 CHAPTER 3 Writing and mapping classes
3.4.6 Using quoted SQL identifiers

By default, NHibernate doesn’t quote table and column names in the generated SQL.
This makes the SQL slightly more readable and also lets you take advantage of the fact
that most SQL databases are case insensitive when comparing unquoted identifiers.
From time to time, especially in legacy databases, you’ll encounter identifiers with
strange characters or whitespace, or you may wish to force case sensitivity.

 If you quote a table or column name with backticks in the mapping document,
NHibernate always quotes this identifier in the generated SQL. The following property
declaration forces NHibernate to generate SQL with the quoted column name "Item
Description". NHibernate also knows that Microsoft SQL Server needs the variation
[Item Description] and that MySQL requires `Item Description`:

<property name="Description"
 column="`Item Description`"/>

There is no way, apart from quoting all table and column names in backticks, to force
NHibernate to use quoted identifiers everywhere.

 NHibernate gives you further control when mapping between your domain model
and the database schema, by also letting you control naming conventions. We discuss
this next.

3.4.7 Naming conventions

Development teams must often follow strict conventions for table and column names
in their databases. NHibernate provides a feature that lets you enforce naming stan-
dards automatically.

 Suppose that all table names in CaveatEmptor should follow the pattern CE_<table
name>. One solution is to manually specify a table attribute on all <class> and col-
lection elements in your mapping files. This approach is time consuming and easily
forgotten. Instead, you can implement NHibernate’s INamingStrategy interface, as in
listing 3.6.

public class CENamingStrategy : INamingStrategy {
 public string ClassToTableName(string className) {
 return TableName(
 StringHelper.Unqualify(className).ToUpper());
 }
 public string PropertyToColumnName(string propertyName) {
 return propertyName.ToUpper ();
 }
 public string TableName(string tableName) {
 return "CE_" + tableName;
 }
 public string ColumnName(string columnName) {
 return columnName;
 }

Listing 3.6 INamingStrategy implementation

73Basic property and class mappings
 public string PropertyToTableName(string className,
 string propertyName) {
 return ClassToTableName(className) + '_' +
 PropertyToColumnName(propertyName);
 }
}

The ClassToTableName() method is called only if a <class> mapping doesn’t specify
an explicit table name. The PropertyToColumnName() method is called if a property
has no explicit column name. The TableName() and ColumnName() methods are called
when an explicit name is declared.

 If you enable CENamingStrategy, this class mapping declaration

<class name="BankAccount">

results in CE_BANKACCOUNT as the name of the table. The ClassToTableName()
method is called with the fully qualified class name as the argument.

 But if you specify a table name

<class name="BankAccount" table="BANK_ACCOUNT">

then CE_BANK_ACCOUNT is the name of the table. In this case, BANK_ACCOUNT is
passed to the TableName() method.

 The best feature of INamingStrategy is the potential for dynamic behavior.
To activate a specific naming strategy, you can pass an instance to the NHibernate
Configuration at runtime:

Configuration cfg = new Configuration();
cfg.NamingStrategy = new CENamingStrategy();
ISessionFactory sessionFactory =
 cfg.configure().BuildSessionFactory();

This lets you have multiple ISessionFactory instances based on the same mapping
documents, each using a different INamingStrategy. This is extremely useful in a mul-
ticlient installation where unique table names (but the same data model) are required
for each client.

 But a better way to handle this kind of requirement is to use the concept of a SQL
schema (a kind of namespace).

3.4.8 SQL schemas

SQL schemas are a feature available in many databases, including SQL Server 2005 and
MySQL. They let you organize your database objects into meaningful groups. For exam-
ple, the AdventureWorks sample database that comes with Microsoft SQL Server 2005
defines five schemas: Human Resources, Person, Production, Purchasing, and Sales. All
these schemas live in a single database, and each has its own tables, views and other data-
base objects.

 Many databases are designed with only one schema. You can specify a default
schema using the hibernate.default_schema configuration option; doing so offers
some small performance benefits.

74 CHAPTER 3 Writing and mapping classes
 Alternatively, if your database is like AdventureWorks and has many schemas, you
can specify the schema for a particular mapping document or even a particular class
or collection mapping:

<hibernate-mapping>
 <class
 name="NHibernateInAction.HelloWorld.Message,
 NHibernateInAction.HelloWorld"
 schema="HelloWorld">
 ...
 </class>
</hibernate-mapping>

You can even declare a schema for the whole document:

<hibernate-mapping
 schema="HelloWorld">
 ..
</hibernate-mapping>

Next, we discuss another useful thing you can do with the <hibernate-mapping> ele-
ment: specify a default namespace for your classes, to reduce duplication.

3.4.9 Declaring class names

In this chapter, we introduced the CaveatEmptor application. All the persistent classes
of the application are declared in the namespace NHibernate.Auction.Model and are
compiled in the NHibernate.Auction assembly. It would become tedious to specify
this fully qualified name every time you name a class in your mapping documents.

 Let’s reconsider the mapping for the User class (the file User.hbm.xml):

<?xml version="1.0"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="urn:nhibernate-mapping-2.2
http://nhibernate.sourceforge.net/schemas/nhibernate-mapping.xsd">
 <class
 name="NHibernate.Auction.Model.User, NHibernate.Auction">
 ...
 </class>
</hibernate-mapping>

You don’t want to repeat the fully qualified name whenever this or any other class is
named in an association, subclass, or component mapping. Instead, you can specify a
namespace and an assembly:

<hibernate-mapping
 namespace="NHibernate.Auction.Model"
 assembly="NHibernate.Auction">
 <class
 name="User">
 ...
 </class>
</hibernate-mapping>

75Basic property and class mappings
Now all unqualified class names that appear in this mapping document will be pre-
fixed with the declared package name. We assume this setting in all mapping exam-
ples in this book. But this setting is mostly useless when using attribute mapping,
because you can specify the .NET type, and NHibernate.Mapping.Attributes will
write its fully qualified name.

 You can also use the methods SetDefaultNamespace() and SetDefaultAssembly()
of the Configuration class to achieve the same result for the entire application.

NOTE We’ll no longer write the XSD information, because it clutters the examples.

Both approaches we’ve described—XML and .NET attributes—assume that all map-
ping information is known at deployment time. Suppose that some information isn’t
known before the application starts. Can you programmatically manipulate the map-
ping metadata at runtime?

3.4.10 Manipulating metadata at runtime

It’s sometimes useful for an application to browse, manipulate, or build new mappings
at runtime. (You can safely skip this section and come back to it later when you need
to.) .NET provides XML APIs that allow direct runtime manipulation of XML docu-
ments: you can create or manipulate an XML document at runtime before feeding it
to the Configuration object.

 But NHibernate also exposes a configuration-time metamodel. The metamodel
contains all the information declared in your XML mapping documents. Direct pro-
grammatic manipulation of this metamodel is sometimes useful, especially for applica-
tions that allow for extension by user-written code.

 For example, the following code adds a new Motto property to the User class
mapping:

PersistentClass userMapping = cfg.GetClassMapping(typeof(User));

Column column = new Column(new StringType(), 0);
column.Name = "MOTTO";
column.IsNullable = false;
column.IsUnique = true;
userMapping.Table.AddColumn(column);

SimpleValue value = new SimpleValue();
value.Table = userMapping.Table;
value.AddColumn(column);
value.Type = new StringType();

Property prop = new Property();
prop.Value = value;
prop.Name = "Motto";
userMapping.AddProperty(prop);

ISessionFactory sf = cfg.BuildSessionFactory();

A PersistentClass object represents the metamodel for a single persistent class; we
retrieve it from the Configuration. Column, SimpleValue, and Property are all classes

Get mapping
information

 for User from
configuration

Define new column
for USER table

Wrap column
in value

Define new property
of User class

Build new session factory
using new mapping

76 CHAPTER 3 Writing and mapping classes
of the NHibernate metamodel and are available in the namespace NHibernate.
Mapping; the class StringType is in the namespace NHibernate.Type. Keep in mind
that adding a property to an existing persistent class mapping as shown here is easy, but
programmatically creating a new mapping for a previously unmapped class is quite a
bit more involved.

 Once an ISessionFactory is created, its mappings are immutable. The ISession-
Factory uses a different metamodel internally than the one used at configuration time.
There is no way to get back to the original Configuration from the ISessionFactory
or ISession. But the application may read the ISessionFactory’s metamodel by calling
GetClassMetadata() or GetCollectionMetadata(). Here’s an example:

User user = ...;
ClassMetadata meta = sessionFactory.GetClassMetadata(typeof(User));
string[] metaPropertyNames = meta.GetPropertyNames();
object[] propertyValues = meta.GetPropertyValues(user);

This code snippet retrieves the names of persistent properties of the User class and
the values of those properties for a particular instance. This helps you write generic
code. For example, you might use this feature to label UI components or improve
log output.

 Now let’s turn to a special mapping element you’ve seen in most of the previous
examples: the identifier property mapping. We begin by discussing the notion of object
identity.

3.5 Understanding object identity
It’s vital to understand the difference between object identity and object equality before
we discuss terms like database identity and how NHibernate manages identity. You need
these concepts if you want to finish mapping the CaveatEmptor persistent classes and
their associations with NHibernate.

3.5.1 Identity versus equality

.NET developers understand the difference between .NET object identity and equality.
Object identity, object.ReferenceEquals(), is a notion defined by the CLR environ-
ment. Two object references are identical if they point to the same memory location.

 On the other hand, object equality is a notion defined by classes that implement the
Equals() method (or the operator ==), sometimes also referred to as equivalence. Equiv-
alence means that two different (non-identical) objects have the same value. Two dif-
ferent instances of string are equal if they represent the same sequence of characters,
even though they each have their own location in the memory space of the virtual
machine. (We admit that this isn’t entirely true for strings, but you get the idea.)

 Persistence complicates this picture. With object/relational persistence, a persis-
tent object is an in-memory representation of a particular row of a database table.
Along with .NET identity (memory location) and object equality, we pick up database
identity (location in the persistent data store). We now have three methods for identify-
ing objects:

77Understanding object identity
■ Object identity—Objects are identical if they occupy the same memory location.
This can be checked by using object.ReferenceEquals().

■ Object equality—Objects are equal if they have the same value, as defined by
the Equals(object o) method. Classes that don’t explicitly override this
method inherit the implementation defined by System.Object, which com-
pares object identity.

■ Database identity—Objects stored in a relational database are identical if they
represent the same row or, equivalently, share the same table and primary key
value.

You need to understand how database identity relates to object identity in NHibernate.

3.5.2 Database identity with NHibernate

NHibernate exposes database identity to the application in two ways:

■ The value of the identifier property of a persistent instance
■ The value returned by ISession.GetIdentifier(object o)

The identifier property is special: its value is the primary-key value of the database row
represented by the persistent instance. We don’t usually show the identifier property
in the domain model—it’s a persistence-related concern, not part of the business
problem. In our examples, the identifier property is always named id. If myCategory is
an instance of Category, calling myCategory.Id returns the primary key value of the
row represented by myCategory in the database.

 Should you make the property for the identifier private scope or public? Well,
database identifiers are often used by the application as a convenient handle to a par-
ticular instance, even outside the persistence layer. For example, web applications
often display the results of a search screen to the user as a list of summary informa-
tion. When the user selects a particular element, the application may need to retrieve
the selected object. It’s common to use a lookup by identifier for this pur-
pose—you’ve probably already used identifiers this way, even in applications using
direct ADO.NET. It’s usually appropriate to fully expose the database identity with a
public identifier property.

 On the other hand, we usually don’t implement a set accessor for the identifier
(in this case, NHibernate uses .NET reflection to modify the identifier field). And we
also usually let NHibernate generate the identifier value. The exceptions to this rule
are classes with natural keys, where the value of the identifier is assigned by the appli-
cation before the object is made persistent, instead of being generated by NHibernate.
(We discuss natural keys in the next section.) NHibernate doesn’t let you change the
identifier value of a persistent instance after it’s first assigned. Remember, part of the
definition of a primary key is that its value should never change. Let’s implement an
identifier property for the Category class and map it with .NET attributes:

[Class(Table="CATEGORY")]
public class Category {
 private long id;

78 CHAPTER 3 Writing and mapping classes
 //...
 [Id(Name="Id", Column="CATEGORY_ID", Access="nosetter.camelcase")]
 [Generator(1, Class="native")]
 public long Id {
 get { return this.id; }
 }
 //...
}

The property type depends on the primary key type of the CATEGORY table and the
NHibernate mapping type. This information is determined by the <id> element in the
mapping document. Here is the XML mapping:

<class name="Category" table="CATEGORY">
 <id name="Id" column="CATEGORY_ID" access="nosetter.camelcase">
 <generator class="native"/>
 </id>
 ...
</class>

The identifier property is mapped to the primary-key column CATEGORY_ID of the
CATEGORY table. The NHibernate type for this property is long, which maps to a
BIGINT column type in most databases and which has also been chosen to match the
type of the identity value produced by the native identifier generator. (We discuss
identifier-generation strategies in the next section.) The access strategy used
here—access="nosetter.camelcase"—tells NHibernate that there is no set accessor
and that it should use the camelCase transformation to deduce the name of the iden-
tity field using the property name. If possible, NHibernate will use a reflection opti-
mizer to avoid reflection costs (explained later in this chapter).

 In addition to operations for testing .NET object identity (object.Reference-
Equals(a,b)) and object equality (a.Equals(b)), you may now use a.Id==b.Id to test
database identity.

 An alternative approach to handling database identity is to not implement any
identifier property, and let NHibernate manage database identity internally. In this
case, you omit the name attribute in the mapping declaration:

<id column="CATEGORY_ID">
 <generator class="native"/>
</id>

NHibernate will now manage the identifier values internally. You may obtain the iden-
tifier value of a persistent instance as follows:

long catId = (long) session.GetIdentifier(category);

This technique has a serious drawback: you can no longer use NHibernate to manipu-
late detached objects effectively (see section 4.1.5). You should always use identifier prop-
erties in NHibernate. If you don’t like them being visible to the rest of your
application, make the property protected or private.

79Understanding object identity
 Using database identifiers in NHibernate is easy. Choosing a good primary key
(and key-generation strategy) can be more difficult. We discuss these issues next.

3.5.3 Choosing primary keys

You have to tell NHibernate about your preferred strategy for generating a primary
key. But first, let’s define primary key.

 The candidate key is a column or set of columns that uniquely identifies a specific
row of the table. A candidate key must satisfy the following properties:

■ The value or values are never null.
■ Each row has a unique value or values.
■ The value or values of a particular row never change.

For a given table, several columns or combinations of columns may satisfy these prop-
erties. If a table has only one identifying attribute, it’s by definition the primary key. If
there are multiple candidate keys, you need to choose between them (candidate keys
not chosen as the primary key should be declared as unique keys in the database). If
there are no unique columns or unique combinations of columns, and hence no can-
didate keys, then the table is by definition not a relation as defined by the relational
model (it permits duplicate rows), and you should rethink your data model.

 Many legacy SQL data models use natural primary keys. A natural key is a key with
business meaning: an attribute or combination of attributes that is unique by virtue of
its business semantics. Examples of natural keys might be a U.S. Social Security Num-
ber or an Australian Tax File Number. Distinguishing natural keys is simple: if a candi-
date-key attribute has meaning outside the database context, it’s a natural key,
whether or not it’s automatically generated.

 Experience has shown that natural keys almost always cause problems in the long
run. A good primary key must be unique, constant, and required (never null or
unknown). Few entity attributes satisfy these requirements, and some that do aren’t
efficiently indexable by SQL databases. In addition, you should make absolutely cer-
tain that a candidate-key definition could never change throughout the lifetime of the
database before promoting it to a primary key. Changing the definition of a primary
key and all foreign keys that refer to it is a frustrating task.

 For these reasons, we strongly recommend that new applications use synthetic
identifiers (also called surrogate keys). Surrogate keys have no business mean-
ing—they’re unique values generated by the database or application. You can use a
number of well-known approaches to generate surrogate keys.

 NHibernate has several built-in identifier-generation strategies. We list the most
useful options in table 3.1.

 You aren’t limited to these built-in strategies; you can learn about others by read-
ing NHibernate’s reference documentation. You may also create your own identifier
generator by implementing NHibernate’s IIdentifierGenerator interface. It’s even

80 CHAPTER 3 Writing and mapping classes
possible to mix identifier generators for persistent classes in a single domain model,
but for nonlegacy data we recommend using the same generator for all classes.

 The special assigned identifier generator strategy is most useful for entities with
natural primary keys. This strategy lets the application assign identifier values by set-
ting the identifier property before making the object persistent by calling Save().
This strategy has some serious disadvantages when you’re working with detached
objects and transitive persistence (both of these concepts are discussed in the next
chapter). Don’t use assigned identifiers if you can avoid them; it’s much easier to use
a surrogate primary key generated by one of the strategies listed in table 3.1.

 For legacy data, the picture is more complicated. In this case, you’re often stuck
with natural keys and especially composite keys (natural keys composed of multiple table

Table 3.1 NHibernate’s built-in identifier generator modules

Generator
name

Description

native Picks other identity generators like identity, sequence, or hilo depending on the
capabilities of the underlying database.

identity Supports identity columns in DB2, MySQL, MS SQL Server, Sybase, and Informix. The
identifier returned by the database is converted to the property type using
Convert.ChangeType. Any integral property type is supported.

sequence Uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi, and Firebird. The identi-
fier returned by the database is converted to the property type using
Convert.ChangeType. Any integral property type is thus supported.

increment At NHibernate startup, reads the table’s maximum primary-key column value and incre-
ments the value by one each time a new row is inserted. The generated identifier can
be of any integral type. This generator is especially efficient if the single-server NHiber-
nate application has exclusive access to the database but shouldn’t be used in any
other scenario (like in clusters).

hilo Generates identifiers that are unique only for a particular database. A high/low algo-
rithm is an efficient way to generate identifiers of any integral type, given a table and
column (by default hibernate_unique_key and next_hi, respectively) as a source of hi
values. See (Ambler 2002) for more information about the high/low approach to unique
identifiers. Don’t use this generator with a user-supplied connection.

uuid.hex Uses System.Guid and its ToString(string format) method to generate
identifiers of type string. The length of the string returned depends on the configured
format. This generation strategy isn’t popular, because CHAR primary keys consume
more database space than numeric keys and are marginally slower.

guid Used when the identifier’s type is Guid. The identifier must have Guid.Empty as
default value. When saving the entity, this generator assigns it a new value using
Guid.NewGuid().

guid.comb Similar to guid, but uses another algorithm that makes it almost as fast as when
using integers (especially when saving in a SQL Server database). The generated values
are ordered; you can use a part of these values as reference numbers, for example.

81Fine-grained object models
columns). Because composite identifiers can be more difficult to work with, we only
discuss them in the context of section 9.2, “Legacy schemas.”

 The next step is to add identifier properties to the classes of the CaveatEmptor
application. Do all persistent classes have their own database identity? To answer this
question, we must explore the distinction between entities and value types in NHiber-
nate. These concepts are required for fine-grained object modeling.

3.6 Fine-grained object models
A major objective of the NHibernate project is support for fine-grained object models,
which we isolated as the most important requirement for a rich domain model. It’s
one reason we’ve chosen POCOs.

 In crude terms, fine-grained means “more classes than tables.” For example, a user
may have both a billing address and a home address. In the database, you may have a
single USER table with the columns BILLING_STREET, BILLING_CITY, and BILLING_ ZIP-
CODE along with HOME_STREET, HOME_CITY, and HOME_ZIPCODE. There are good
reasons to use this somewhat denormalized relational model (performance, for one).

 In your object model, you can use the same approach, representing the two addresses
as six string-valued properties of the User class. But it’s much better to model this using
an Address class, where User has the billingAddress and homeAddress properties.

 This object model achieves improved cohesion and greater code reuse and is more
understandable. In the past, many ORM solutions haven’t provided good support for
this kind of mapping.

 NHibernate emphasizes the usefulness of fine-grained classes for implementing
type-safety and behavior. For example, many people would model an email address as
a string-valued property of User. We suggest that a more sophisticated approach is to
define an EmailAddress class that can add higher-level semantics and behavior. For
example, it may provide a SendEmail() method.

3.6.1 Entity and value types

This leads us to a distinction of central importance in ORM. In .NET, all classes are of
equal standing: all objects have their own identity and lifecycle, and all class instances
are passed by reference. Only primitive types are passed by value.

 We advocate a design in which there are more persistent classes than tables. One
row represents multiple objects. Because database identity is implemented by primary-
key value, some persistent objects won’t have their own identity. In effect, the persis-
tence mechanism implements pass-by-value semantics for some classes. One of the
objects represented in the row has its own identity, and others depend on that.

 NHibernate makes the following essential distinction:

■ An object of entity type has its own database identity (primary-key value). An
object reference to an entity is persisted as a reference in the database (a for-
eign-key value). An entity has its own lifecycle; it may exist independently of any
other entity.

82 CHAPTER 3 Writing and mapping classes
■ An object of value type has no database identity; it belongs to an entity, and its
persistent state is embedded in the table row of the owning entity (except in the
case of collections, which are also considered value types, as you’ll see in chap-
ter 6). Value types don’t have identifiers or identifier properties. The lifespan of
a value-type instance is bounded by the lifespan of the owning entity.

The most obvious value types are simple objects like Strings and Integers. NHiber-
nate also lets you treat a user-defined class as a value type, as you’ll see next. (We also
come back to this important concept in section 6.1.)

3.6.2 Using components

So far, the classes of the object model have
all been entity classes with their own lifecycle
and identity. But the User class has a special
kind of association with the Address class, as
shown in figure 3.5.

 In object-modeling terms, this associa-
tion is a kind of aggregation—a “part of” rela-
tionship. Aggregation is a strong form of
association: it has additional semantics with regard to the lifecycle of objects. In this
case, you have an even stronger form, composition, where the lifecycle of the part is
dependent on the lifecycle of the whole.

 Object modeling experts and UML designers will claim that there is no difference
between this composition and other weaker styles of association when it comes to the
.NET implementation. But in the context of ORM, there is a big difference: a com-
posed class is often a candidate value type.

 You now map Address as a value type and User as an entity. Does this affect the
implementation of your POCO classes?

 .NET has no concept of composition—a class or attribute can’t be marked as a
component or composition. The only difference is the object identifier: a component
has no identity; hence the persistent component class requires no identifier property
or identifier mapping. The composition between User and Address is a metadata-level
notion; you only have to tell NHibernate that the Address is a value type in the map-
ping document.

 NHibernate uses the term component for a user-defined class that is persisted to the
same table as the owning entity, as shown in listing 3.7. (The use of the word component
here has nothing to do with the architecture-level concept, as in software component.)

 <class
 name="User"
 table="USER">
 <id
 name="Id"

Listing 3.7 Mapping the User class with a component Address

Street : string
Zipcode : string
City : string

Address

User

billing

home

Firstname : string
Lastname : string
Username : string
Password : string
Email : string
Ranking : int
Created : DateTime

Figure 3.5 Relationships between User and
Address using composition

83Fine-grained object models
 column="USER_ID"
 type="Int64">
 <generator class="native"/>
 </id>
 <property
 name="Username"
 column="USERNAME"
 type="String"/>
 <component
 name="HomeAddress"
 class="Address">
 <property name="Street"
 type="String"
 column="HOME_STREET"
 not-null="true"/>
 <property name="City"
 type="String"
 column="HOME_CITY"
 not-null="true"/>
 <property name="Zipcode"
 type="Int16"
 column="HOME_ZIPCODE"
 not-null="true"/>
 </component>
 <component
 name="BillingAddress"
 class="Address">
 <property name="Street"
 type="String"
 column="BILLING_STREET"
 not-null="true"/>
 <property name="City"
 type="String"
 column="BILLING_CITY"
 not-null="true"/>
 <property name="Zipcode"
 type="Int16"
 column="BILLING_ZIPCODE"
 not-null="true"/>
 </component>
 ...
</class>

You declare the persistent attributes of Address inside the
<component> element B. The property of the User class is
named HomeAddress. You reuse the same component class
to map another property of this type to the same table C.

 Figure 3.6 shows how the attributes of the Address class
are persisted to the same table as the User entity.

 Components may be harder to map with NHibernate.
Mapping.Attributes. When you’re using a component in
many classes with the identical mapping, it’s easy to do (far
easier than with XML mapping):

Declare persistent
attributes

B

Reuse
component class

C

Figure 3.6 Table
attributes of User with
Address component

84 CHAPTER 3 Writing and mapping classes
[Component]
public class Address {
 [Property(NotNull=true)]
 public string Street { ... }
 [Property(NotNull=true)]
 public string City { ... }
 [Property(NotNull=true)]
 public short Zipcode { ... }
}
[Class]
class User {
 //...
 [ComponentProperty]
 public Address HomeAddress { ... }
}
[Class]
class House {
 //...
 [ComponentProperty]
 public Address Location { ... }
}

But the User class has two addresses, each mapped to different columns. There are
many ways to map them (see appendix B). Here is one solution:

[Class]
class User {
 //...
 [Component(Name="HomeAddress", ClassType=typeof(Address))]
 protected class HomeAddressMapping {
 [Property(Column="HOME_STREET", NotNull=true)]
 public string Street { ... }
 [Property(Column="HOME_CITY", NotNull=true)]
 public string City { ... }
 [Property(Column="HOME_ZIPCODE", NotNull=true)]
 public short Zipcode { ... }
 }
 public Address HomeAddress { ... }
 [Component(Name="BillingAddress", ClassType=typeof(Address))]
 protected class BillingAddressMapping {
 [Property(Column="BILLING_STREET", NotNull=true)]
 public string Street { ... }
 [Property(Column="BILLING_CITY", NotNull=true)]
 public string City { ... }
 [Property(Column="BILLING_ZIPCODE", NotNull=true)]
 public short Zipcode { ... }
 }
 public Address BillingAddress { ... }
}

We simulate the hierarchy of the XML mapping using the classes HomeAddressMapping
and BillingAddressMapping, whose sole purpose is to provide the mapping. Note
that NHibernate.Mapping.Attributes will automatically pick them because they
belong to the User class. This solution isn’t elegant. You won’t have to deal with this
kind of mapping often.

85Fine-grained object models
 Whenever you think that XML mapping would be easier to use than attributes, you
can use the [RawXml] attribute to integrate this XML inside your attributes. This is
probably the case here; you can include the XML mapping of the components in list-
ing 3.7 like this:

[Class]
class User {
 //...
 [RawXml(After=typeof(ComponentAttribute), Content=@"
 <component name=""HomeAddress"">
 ...
 </component>")]
 public Address HomeAddress { ... }
 //...
}

The [RawXml] attribute has two properties. After tells which kind of mapping the XML
should be inserted after; most of the time, it’s the type of the attribute defined in the
XML. This property is optional, in which case the XML is inserted on the top of the map-
ping. The second property is Content; it’s the string containing the XML to include.

 Notice that in this example, you model the composition association as unidirec-
tional. You can’t navigate from Address to User. NHibernate supports both unidirec-
tional and bidirectional compositions, but unidirectional composition is far more
common. Here’s an example of a bidirectional mapping:

<component
 name="HomeAddress"
 class="Address">
 <parent name="Owner"/>
 <property name="Street" type="String" column="HOME_STREET"/>
 <property name="City" type="String" column="HOME_CITY"/>
 <property name="Zipcode" type="short" column="HOME_ZIPCODE"/>
</component>

The <parent> element maps a property of type User to the owning entity; in this
example, the property is named Owner. You then call Address.Owner to navigate in the
other direction.

 An NHibernate component may own other components and even associations to
other entities. This flexibility is the foundation of NHibernate’s support for fine-
grained object models. (We discuss various component mappings in chapter 6.)

 But classes mapped as components have two important limitations:

■ Shared references aren’t possible —The component Address doesn’t have its own
database identity (primary key), and so a particular Address object can’t be
referred to by any object other than the containing instance of User.

■ There is no elegant way to represent a null reference to an Address —In lieu of an ele-
gant approach, NHibernate represents null components as null values in all
mapped columns of the component. This means that if you store a component
object with all null property values, NHibernate will return a null component
when the owning entity object is retrieved from the database.

86 CHAPTER 3 Writing and mapping classes
Finally, it’s also possible to make a component immutable:

<component ... insert="false", update="false" />

When you make entities or components immutable, they may not be updated or
deleted. This allows NHibernate to make minor performance optimizations. More
important, immutable objects are much simpler to deal with: they can be shared and
copied, and you’re safe in the knowledge that they can’t be changed.

 Support for fine-grained classes is just one ingredient of a rich domain model. We
now look at creating and mapping associations between the domin model classes.

3.7 Introducing associations
Managing the associations between classes and the relationships between tables is the
soul of ORM. Most of the difficult problems involved in implementing an ORM solu-
tion relate to association management.

 The NHibernate association model is extremely rich but isn’t without pitfalls, espe-
cially for new users. In this section, we don’t try to cover all the possible combinations;
we examine certain cases that are extremely common. We return to the subject of
association mappings in chapter 7 for a more complete treatment.

 But first, we need to explain something up front.

3.7.1 Unidirectional associations

When you’re using (typed) DataSets, associations are represented as in a database. To
link two entities, you have to set the foreign key in one entity to the primary key of the
other. There isn’t the notion of collection; so you can’t add an entity to a collection
and get the association created.

 Transparent POCO-oriented persistence implementations such as NHibernate pro-
vide support for collections. But it’s important to understand that NHibernate associa-
tions are all inherently unidirectional. As far as NHibernate is concerned, the association
from Bid to Item is a different association than the association from Item to Bid. This
means that bid.Item=item and item.Bids.Add(bid) are two unrelated operations.

 To some people, this seems strange; to others, it feels natural. After all, associa-
tions at the language level are always unidirectional—and NHibernate claims to
implement persistence for plain .NET objects. We’ll merely observe that this decision
was made because NHibernate objects aren’t bound to any context. In NHibernate
applications, the behavior of a nonpersistent instance is the same as the behavior of a
persistent instance.

 Because associations are so important, we need precise language for classifying them.

3.7.2 Multiplicity

In describing and classifying associations, you’ll
almost always use the multiplicity association. Look at
figure 3.7.

 The multiplicity consists of two bits of information:

0..*1..1Item Bid

Figure 3.7 Relationship between
Item and Bid

87Introducing associations
■ Can there be more than one Bid for a particular Item?
■ Can there be more than one Item for a particular Bid?

After glancing at the object model, you can conclude that the association from Bid
to Item is a many-to-one association. Recalling that associations are directional, you
can also call the inverse association from Item to Bid a one-to-many association.
(There are two more possibilities: many-to-many and one-to-one; we get back to them in
chapter 6.)

 In the context of object persistence, we aren’t interested in whether “many” means
“two” or “maximum of five” or “unrestricted.”

3.7.3 The simplest possible association

The association from Bid to Item is an example of the simplest possible kind of associ-
ation in ORM. The object reference returned by bid.Item is easily mapped to a for-
eign key column in the BID table. First, here’s the C# class implementation of Bid
mapped using .NET attributes:

[Class(Table="BID")]
public class Bid {
 ...
 private Item item;
 [ManyToOne(Column="ITEM_ID", NotNull=true)]
 public Item Item {
 get { return item; }
 set { item = value; }
 }
 ...
}

Next, here’s the corresponding NHibernate mapping for this association:

<class
 name="Bid"
 table="BID">
 ...
 <many-to-one
 name="Item"
 column="ITEM_ID"
 class="Item"
 not-null="true" />
</class>

This mapping is called a unidirectional many-to-one association. The column ITEM_ID in
the BID table is a foreign key to the primary key of the ITEM table.

 You explicitly specify the Item class, which the association refers to. This specifica-
tion is usually optional, because NHibernate can determine this using reflection.

 You specify the not-null attribute because you can’t have a bid without an item.
The not-null attribute doesn’t affect the runtime behavior of NHibernate in this case;
it exists mainly to control automatic data definition language (DDL) generation (see
chapter 10).

88 CHAPTER 3 Writing and mapping classes
 In some legacy databases, a many-to-one association may point to a nonexistent
entity. The property not-found lets you define how NHibernate should react to this
situation:

<many-to-one ... not-found="ignore|exception" />

Using not-found="exception" (the default value), NHibernate throws an exception.
And not-found="ignore" makes NHibernate ignore this association (leaving it null).

3.7.4 Making the association bidirectional

So far so good. But you also need to be able to easily fetch all the bids for a particular
item. You need a bidirectional association here, so you have to add scaffolding code to
the Item class:

public class Item {
 //...
 private ISet bids = new HashedSet();
 public ISet Bids {
 get { return bids; }
 set { bids = value; }
 }
 public void AddBid(Bid bid) {
 bid.Item = this;
 bids.Add(bid);
 }
 //...
}

You can think of the code in AddBid() (a convenience method) as implementing a
strong bidirectional association in the object model.

 A basic mapping for this one-to-many association would look like this:

 [Set]
 [Key(1, Column="ITEM_ID")]
 [OneToMany(2, ClassType=typeof(Bid))]
 public ISet Bids { ... }

Here is the equivalent XML wrapped in its class mapping:

<class
 name="Item"
 table="ITEM">
 ...
 <set name="Bids">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>
</class>

The column mapping defined by the <key> element is a foreign-key column of the
associated BID table. Notice that you specify the same foreign-key column in this col-
lection mapping that you specified in the mapping for the many-to-one association.
The table structure for this association mapping is shown in figure 3.8.

89Introducing associations
 Now you have two different unidirec-
tional associations mapped to the same for-
eign key, which poses a problem. At runtime,
there are two different in-memory represen-
tations of the same foreign key value: the
item property of Bid and an element of the
bids collection held by an Item. Suppose
your application modifies the association by,
for example, adding a bid to an item in this
fragment of the AddBid() method:

bid.Item = this;
bids.Add(bid);

This code is fine, but in this situation, NHibernate detects two different changes to the
in-memory persistent instances. From the point of view of the database, just one value
must be updated to reflect these changes: the ITEM_ID column of the BID table. NHi-
bernate doesn’t transparently detect the fact that the two changes refer to the same
database column, because at this point you’ve done nothing to indicate that this is a
bidirectional association.

 You need one more thing in your association mapping to tell NHibernate to treat
this as a bidirectional association. The inverse attribute tells NHibernate that the col-
lection is a mirror image of the many-to-one association on the other side:

<class
 name="Item"
 table="ITEM">
 ...
 <set
 name="bids"
 inverse="true">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>
</class>

Without the inverse attribute, NHibernate would try to execute two different SQL
statements, both updating the same foreign-key column, when you manipulate the
association between the two instances. By specifying inverse="true", you explicitly
tell NHibernate which end of the association it should synchronize with the database.
In this example, you tell NHibernate that it should propagate changes made at the Bid
end of the association to the database, ignoring changes made only to the bids collec-
tion. If you only call item.Bids.Add(bid), no changes are made persistent. This is
consistent with the behavior in .NET without NHibernate: if an association is bidirec-
tional, you have to create the link on two sides, not just one.

 You now have a working bidirectional many-to-one association (which could also be
called a bidirectional one-to-many association, of course).

ITEM_ID <<PK>>

NAME

DESCRIPTION

INITIAL_PRICE

...

BID_ID <<PK>>

ITEM_ID <<FK>>

AMOUNT

...

<<Table>>
ITEM <<Table>>

BID

Figure 3.8 Table relationships and keys for a
one-to-many/many-to-one mapping

90 CHAPTER 3 Writing and mapping classes
CASCADING SAVES AND DELETES

One final piece is missing. We explore the notion of transitive persistence in much
greater detail in the next chapter. For now, we introduce the concepts of cascading save
and cascading delete, which you need in order to finish mapping this association.

 When you instantiate a new Bid and add it to an Item, the bid should become per-
sistent immediately. You want to avoid the need to explicitly make a Bid persistent by
calling Save() on the ISession interface.

 You make one final tweak to the mapping document to enable cascading save:

<class
 name="Item"
 table="ITEM">
 ...
 <set
 name="Bids"
 inverse="true"
 cascade="save-update">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>
</class>

The cascade attribute tells NHibernate to make any new Bid instance persistent (that
is, save it in the database) if the Bid is referenced by a persistent Item.

 The cascade attribute is directional: it applies to only one end of the association.
You could also specify cascade="save-update" for the many-to-one association
declared in the mapping for Bid, but doing so would make no sense in this case
because Bids are created after Items.

 Are you finished? Not quite. You still need to define the lifecycle for both entities
in your association.

3.7.5 A parent/child relationship

With the previous mapping, the association between Bid and Item is fairly loose.
You’d use this mapping in a real system if both entities had their own lifecycle and
were created and removed in unrelated business processes. Certain associations are
much stronger than this; some entities are bound together so that their lifecycles
aren’t truly independent. In the example, it seems reasonable that deletion of an item
implies deletion of all bids for the item. A particular bid instance references only one
item instance for its entire lifetime. In this case, cascading both saves and deletions
makes sense.

 If you enable cascading delete, the association between Item and Bid is called a
parent/child relationship. In a parent/child relationship, the parent entity is responsible
for the lifecycle of its associated child entities. This is the same semantic as a composi-
tion (using NHibernate components), but in this case only entities are involved; Bid
isn’t a value type. The advantage of using a parent/child relationship is that the child
may be loaded individually or referenced directly by another entity. A bid, for exam-
ple, may be loaded and manipulated without retrieving the owning item. It may be

91Mapping class inheritance
stored without storing the owning item at the same time. Furthermore, you reference
the same Bid instance in a second property of Item, the single SuccessfulBid (see fig-
ure 3.2). Objects of value type can’t be shared.

 To remodel the Item to Bid association as a parent/child relationship, the only
change you need to make is to the cascade attribute:

<class
 name="Item"
 table="ITEM">
 ...
 <set
 name="Bids"
 inverse="true"
 cascade="all-delete-orphan">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>
</class>

You use cascade="all-delete-orphan" to indicate the following:

■ Any newly instantiated Bid becomes persistent if the Bid is referenced by a per-
sistent Item (as is also the case with cascade="save-update"). Any persistent
Bid should be deleted if it’s referenced by an Item when the item is deleted.

■ Any persistent Bid should be deleted if it’s removed from the bids collection of
a persistent Item. (NHibernate will assume that it was only referenced by this
item and consider it an orphan.)

You achieve the following with this mapping: a Bid is removed from the database if it’s
removed from the collection of Bids of the Item (or it’s removed if the Item is removed).

 The cascading of operations to associated entities is NHibernate’s implementation
of transitive persistence. We look more closely at this concept in section 4.3.

 We’ve covered only a tiny subset of the association options available in NHibernate.
But you already have enough knowledge to be able to build entire applications. The
remaining options are either rare or variations of the associations we’ve described.

 We recommend keeping your association mappings simple and using NHibernate
queries for more complex tasks.

 So far we’ve covered how to map classes, components and associations. We now
look at an essential capability of NHibernate—mapping inheritance hierarchies.

3.8 Mapping class inheritance
A simple strategy for mapping classes to database tables might be “one table for every
class.” This approach sounds simple, and it works well until you encounter inheri-
tance. We end the chapter by exploring this somewhat advanced topic; if you’re inter-
ested primarily in basic NHibernate usage, feel free to skip to chapter 4.

 Inheritance is the most visible feature of the structural mismatch between the object-
oriented and relational worlds. Object-oriented systems model both “is a” and “has a”
relationships. SQL-based models provide only “has a” relationships between entities.

92 CHAPTER 3 Writing and mapping classes
 You can use three different approaches to represent an inheritance hierarchy.
These were catalogued by Scott Ambler (Ambler 2002) in his widely read paper “Map-
ping Objects to Relational Databases”:

■ Table per concrete class —Discard polymorphism and inheritance relationships
from the relational model.

■ Table per class hierarchy —Enable polymorphism by denormalizing the relational
model and using a type-discriminator column to hold type information.

■ Table per subclass —Represent “is a” (inheritance) relationships as “has a” (for-
eign key) relationships.

This section takes a top-down approach; it assumes that you’re starting with a domain
model and trying to derive a new SQL schema. But the mapping strategies described
are just as relevant if you’re working bottom up, starting with existing database tables.

3.8.1 Table per concrete class

Suppose you stick with the simplest approach: you can use exactly one table for each
(non-abstract) class. All properties of a class, including inherited properties, can be
mapped to columns of this table, as shown in figure 3.9.

 The main problem with this approach is that it doesn’t support polymorphic asso-
ciations well. In the database, associations are usually represented as foreign-key rela-
tionships. In figure 3.9, if the subclasses are all mapped to different tables, a
polymorphic association to their base class (abstract BillingDetails in this example)
can’t be represented as a simple foreign-key relationship. This would be problematic
in the domain model, because BillingDetails is associated with User; both tables
would need a foreign-key reference to the USER table.

 Polymorphic queries (queries that return objects of all classes that match the inter-
face of the queried class) are also problematic. A query against the base class must
be executed as several SQL SELECTs, one for each concrete subclass. You might be
able to use a SQL UNION to improve performance by avoiding multiple round trips to
the database. But unions are somewhat nonportable and otherwise difficult to work
with. NHibernate doesn’t support the use of unions at the time of writing and will
always use multiple SQL queries. For a query against the BillingDetails class (for
example, restricting to a certain date of creation), NHibernate would use the follow-
ing SQL:

Owner : string
Number : string
Created : DateTime

Type : int
ExpMonth : string
ExpYear : string

BankName : string
BankSwift : string Figure 3.9 Mapping

table per concrete class

93Mapping class inheritance
select CREDIT_CARD_ID, OWNER, NUMBER, CREATED, TYPE, ...
from CREDIT_CARD
where CREATED = ?
select BANK_ACCOUNT_ID, OWNER, NUMBER, CREATED, BANK_NAME, ...
from BANK_ACCOUNT
where CREATED = ?

Notice that a separate query is needed for each concrete subclass:
 On the other hand, queries against the concrete classes are trivial and perform

well:

select CREDIT_CARD_ID, TYPE, EXP_MONTH, EXP_YEAR
 from CREDIT_CARD where CREATED = ?

Note that here, and in other places in this book, we show SQL that is conceptually identical
to the SQL executed by NHibernate. The actual SQL may look superficially different.

 A further conceptual problem with this mapping strategy is that several different
columns of different tables share the same semantics. This makes schema evolution
more complex. For example, a change to a base class property type results in changes
to multiple columns. It also makes it much more difficult to implement database-
integrity constraints that apply to all subclasses.

 This mapping strategy doesn’t require any special NHibernate mapping declara-
tion: you create a new <class> declaration for each concrete class, specifying a differ-
ent table attribute for each. We recommend this approach (only) for the top level of
your class hierarchy, where polymorphism isn’t usually required.

3.8.2 Table per class hierarchy

Alternatively, an entire class hierarchy can be mapped to a single table. This table
includes columns for all properties of all classes in the hierarchy. The concrete sub-
class represented by a particular row is identified by the value of a type discriminator col-
umn. This approach is shown in figure 3.10.

 This mapping strategy is a winner in terms of both performance and simplicity. It’s
the best-performing way to represent polymorphism—both polymorphic and nonpoly-
morphic queries perform well—and it’s easy to implement by hand. Ad hoc reporting
is possible without complex joins or unions, and schema evolution is straightforward.

 There is one major problem: columns for properties declared by subclasses must
be declared to be nullable. If your subclasses each define several non-nullable proper-
ties, the loss of NOT NULL constraints can be a serious problem from the point of view
of data integrity.

<<Table>>

BILLING_DETAILS

BILLING_DETAILS_ID <<PK>>
BILLING_DETAILS_TYPE <<Discriminator>>
OWNER
NUMBER
CREATED
CREDIT_CARD_TYPE
CREDIT_CARD_EXP_MONTH
CREDIT_CARD_EXP_YEAR
BANK_ACCOUNT_BANK_NAME
BANK_ACCOUNT_BANK_SWIFT

Owner : string
Number : string
Created : DateTime

Type : int
ExpMonth : string
ExpYear : string

BankName : string
BankSwift : string Figure 3.10 Table-per-class

hierarchy mapping

94 CHAPTER 3 Writing and mapping classes
In NHibernate, you use the <subclass> element to indicate a table-per-class hierarchy
mapping, as in listing 3.8.

<hibernate-mapping>
 <class
 name="BillingDetails"
 table="BILLING_DETAILS" discriminator-value="BD">
 <id
 name="Id"
 column="BILLING_DETAILS_ID"
 type="Int64">
 <generator class="native"/>
 </id>
 <discriminator
 column="BILLING_DETAILS_TYPE"
 type="String"/>
 <property
 name="Name"
 column="OWNER"
 type="String"/>
 ...
 <subclass
 name="CreditCard"
 discriminator-value="CC">
 <property
 name="Type"
 column="CREDIT_CARD_TYPE"/>
 ...
 </subclass>
 ...
 </class>
</hibernate-mapping>

The root class BillingDetails of the inheritance hierarchy is mapped to the table
BILLING_DETAILS.

You have to use a special column to distinguish between persistent classes: the discrim-
inator. This isn’t a property of the persistent class; it’s used internally by NHibernate.
The column name is BILLING_DETAILS_TYPE, and the values are strings—in this case,
"CC" (credit card) or "BA" (bank account). NHibernate automatically sets and retrieves
the discriminator values.

Properties of the base class are mapped as always, with a <property> element.

Every subclass has its own <subclass> element. Properties of a subclass are mapped to
columns in the BILLING_DETAILS table. Remember that not-null constraints aren’t
allowed, because a CreditCard instance won’t have a BankSwift property, and the
BANK_ACCOUNT_BANK_SWIFT field must be null for that row.

The <subclass> element can in turn contain other <subclass> elements, until the
whole hierarchy is mapped to the table. A <subclass> element can’t contain a <joined-
subclass> element. (The <joined-subclass> element is used in the specification of

Listing 3.8 NHibernate <subclass> mapping

Root class,
mapped to table

B

Discriminator
column

C

Property
mappingsD

CreditCard
subclassE

B

C

D

E

95Mapping class inheritance
the third mapping option: one table per subclass. This option is discussed in the next
section.) The mapping strategy can’t be switched any more at this point.

Here are the classes mapped using NHibernate.Mapping.Attributes:

[Class(Table="BILLING_DETAILS", DiscriminatorValue="BD")]
public class BillingDetails {
 [Id(Name="Id", Column="BILLING_DETAILS_ID")]
 [Generator(1, Class="native")]
 [Discriminator(2, Column="BILLING_DETAILS_TYPE"
 TypeType=typeof(string))]
 public long Id { ... }
 [Property(Column="OWNER")]
 public string Name { ... }
 [Subclass(DiscriminatorValue="CC")]
 public class CreditCard : BillingDetails {
 [Property(Column="CREDIT_CARD_TYPE")]
 public CreditCardType Type { ... }
 }
 //...
}

Remember that when you want to specify a class in the mapping, you can add "Type"
to the element’s name; for the attribute [Discriminator], you use TypeType. Note
that this attribute can be written before any property because it isn’t linked to any
field/property of the class (if there is more than this attribute on the property, make
sure it comes after the [Id] and before the other attributes).

 NHibernate will use the following SQL when querying the BillingDetails class:

select BILLING_DETAILS_ID, BILLING_DETAILS_TYPE,
 OWNER, ..., CREDIT_CARD_TYPE,
from BILLING_DETAILS
where CREATED = ?

To query the CreditCard subclass, NHibernate uses a condition on the discriminator:

select BILLING_DETAILS_ID,
 CREDIT_CARD_TYPE, CREDIT_CARD_EXP_MONTH, ...
from BILLING_DETAILS
where BILLING_DETAILS_TYPE='CC' and CREATED = ?

How could it be any simpler than that?
 Instead of having a discriminator field, it’s possible to use an arbitrary SQL for-

mula. For example:

<discriminator type="String"
 formula="case when CREDIT_CARD_TYPE is null then 'BD' else 'CC' end"
/>

Here, you use the column CREDIT_CARD_TYPE to evaluate the type.
 Now, let’s discover the alternative to a table-per-class-hierarchy.

3.8.3 Table per subclass

The third option is to represent inheritance relationships as relational foreign-key
associations. Every subclass that declares persistent properties—including abstract
classes and even interfaces—has its own table.

96 CHAPTER 3 Writing and mapping classes
 Unlike the strategy that uses a
table per concrete class, the table
here contains columns only for each
non-inherited property (each prop-
erty declared by the subclass) along
with a primary key that is also a for-
eign key of the base class table. This
approach is shown in figure 3.11.

 If an instance of the CreditCard
subclass is made persistent, the val-
ues of properties declared by the
BillingDetails base class are per-
sisted to a new row of the BILLING_
DETAILS table. Only the values of
properties declared by the subclass
are persisted to the new row of the
CREDIT_CARD table. The two rows
are linked together by their shared
primary-key value. Later, you can
retrieve the subclass instance from
the database by joining the subclass
table with the base class table.

 The primary advantage of this strategy is that the relational model is completely
normalized. Schema evolution and integrity-constraint definition are straightforward.
A polymorphic association to a particular subclass may be represented as a foreign key
pointing to the table of that subclass.

 In NHibernate, you use the <joined-subclass> element to indicate a table-per-
subclass mapping (see listing 3.9).

<?xml version="1.0"?>
<hibernate-mapping>
 <class
 name="BillingDetails"
 table="BILLING_DETAILS">
 <id
 name="Id"
 column="BILLING_DETAILS_ID"
 type="Int64">
 <generator class="native"/>
 </id>
 <property
 name="Owner"
 column="OWNER"
 type="String"/>

Listing 3.9 NHibernate <joined-subclass> mapping

BillingDetails root class, mapped
to BILLING_DETAILS table

B

Table per Subclass

<<Table>>

CREDIT_CARD

CREDIT_CARD_ID <<PK>> <<FK>>

TYPE

EXP_MONTH

EXP_YEAR

<<Table>>

BANK_ACCOUNT

BANK_ACCOUNT_ID <<PK>> <<FK>>

BANK_NAME

BANK_SWIFT

<<Table>>

BILLING_DETAILS

BILLING_DETAILS_ID <<PK>>

OWNER

NUMBER

CREATED

Owner : string
Number : string
Created : DateTime

Type : int
ExpMonth : string
ExpYear : string

BankName : string
BankSwift : string

Figure 3.11 Table-per-subclass mapping

97Mapping class inheritance
 ...
 <joined-subclass
 name="CreditCard"
 table="CREDIT_CARD">
 <key column="CREDIT_CARD_ID">
 <property
 name="Type"
 column="TYPE"/>
 ...
 </joined-subclass>
 ...
 </class>
</hibernate-mapping>

Again, the root class BillingDetails is mapped to the BILLING_DETAILS table. Note
that no discriminator is required with this strategy.

The new <joined-subclass> element is used to map a subclass to a new table (in this
example, CREDIT_CARD). All properties declared in the joined subclass are mapped
to this table. Note that we intentionally left out the mapping example for BankAc-
count, which is similar to CreditCard.

A primary key is required for the CREDIT_CARD table; it also has a foreign-key con-
straint to the primary key of the BILLING_DETAILS table. A CreditCard object lookup
will require a join of both tables.

A <joined-subclass> element may contain other <joined-subclass> elements but
not a <subclass> element. NHibernate doesn’t support mixing of these two mapping
strategies.

 NHibernate will use an outer join when querying the BillingDetails class:

select BD.BILLING_DETAILS_ID, BD.OWNER, BD.NUMER, BD.CREATED,
 CC.TYPE, ..., BA.BANK_SWIFT, ...
 case
 when CC.CREDIT_CARD_ID is not null then 1
 when BA.BANK_ACCOUNT_ID is not null then 2
 when BD.BILLING_DETAILS_ID is not null then 0
 end as TYPE
from BILLING_DETAILS BD
 left join CREDIT_CARD CC on
 BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID
 left join BANK_ACCOUNT BA on
 BD.BILLING_DETAILS_ID = BA.BANK_ACCOUNT_ID
where BD.CREATED = ?

The SQL case statement uses the existence (or nonexistence) of rows in the subclass
tables CREDIT_CARD and BANK_ACCOUNT to determine the concrete subclass for a
particular row of the BILLING_DETAILS table.

 To narrow the query to the subclass, NHibernate uses an inner join instead:

select BD.BILLING_DETAILS_ID, BD.OWNER, BD.CREATED, CC.TYPE, ...
from CREDIT_CARD CC
 inner join BILLING_DETAILS BD on
 BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID
where CC.CREATED = ?

<joined-subclass>
element

C

Primary/foreign keyD

B

C

D

98 CHAPTER 3 Writing and mapping classes
As you can see, this mapping strategy is more difficult to implement by hand—even ad
hoc reporting will be more complex. This is an important consideration if you plan to
mix NHibernate code with handwritten SQL/ADO.NET. (For ad hoc reporting, data-
base views provide a way to offset the complexity of the table-per-subclass strategy. A
view may be used to transform the table-per-subclass model into the much simpler
table-per-hierarchy model.)

 Even though this mapping strategy is deceptively simple, our experience is that
performance may be unacceptable for complex class hierarchies. Queries always
require either a join across many tables or many sequential reads. The problem
should be recast as how to choose an appropriate combination of mapping strategies
for an application’s class hierarchies. A typical domain model design has a mix of
interfaces and abstract classes.

3.8.4 Choosing a strategy

You can apply all mapping strategies to abstract classes and interfaces. Interfaces may
have no state but may contain property declarations, so they can be treated like
abstract classes. You can map an interface using <class>, <subclass>, or <joined-
subclass>; and you can map any declared or inherited property using <property>.
NHibernate won’t try to instantiate an abstract class, even if you query or load it.

 Here are some rules of thumb:

■ If you don’t require polymorphic associations or queries, lean toward the table-
per-concrete-class strategy. If you require polymorphic associations (an associa-
tion to a base class, hence to all classes in the hierarchy with dynamic resolution
of the concrete class at runtime) or queries, and subclasses declare relatively
few properties (particularly if the main difference between subclasses is in their
behavior), lean toward the table-per-class-hierarchy model.

■ If you require polymorphic associations or queries, and subclasses declare many
properties (subclasses differ mainly by the data they hold), lean toward the
table-per-subclass approach.

By default, choose table-per-class-hierarchy for simple problems. For more complex
cases (or when you’re overruled by a data modeler insisting upon the importance of
nullability constraints), you should consider the table-per-subclass strategy. But at that
point, ask yourself whether it might be better to remodel inheritance as delegation in
the object model. Complex inheritance is often best avoided for all sorts of reasons
unrelated to persistence or ORM. NHibernate acts as a buffer between the object and
relational models, but that doesn’t mean you can completely ignore persistence con-
cerns when designing your object model.

 Note that you may also use <subclass> and <joined-subclass> mapping ele-
ments in a separate mapping file (as a top-level element, instead of <class>). You then
have to declare the class that is extended (for example, <subclass name="Credit-
Card" extends="BillingDetails">), and the base-class mapping must be loaded
before the subclass mapping file. This technique allows you to extend a class hierarchy

99Summary
without modifying the mapping file of the base class. Using NHibernate.Mapping.
Attributes, you can move the implementation of CreditCard to another file and map
it like this:

[Subclass(ExtendsType=typeof(BillingDetails), DiscriminatorValue="CC")]
public class CreditCard : BillingDetails {
 //...
}

3.9 Summary
In this chapter, we focused on the structural aspect of the object/relational paradigm
mismatch and discussed the first four generic ORM problems. We explored the pro-
gramming model for persistent classes and the NHibernate ORM metadata for fine-
grained classes, object identity, inheritance, and associations.

 You now understand that persistent classes in a domain model should be free of
cross-cutting concerns such as transactions and security. Even persistence-related con-
cerns shouldn’t leak into the domain model. We no longer entertain the use of restric-
tive programming models such as DataSets for our domain model. Instead, we use
transparent persistence, together with the unrestrictive POCO programming
model—which is really a set of best practices for the creation of properly encapsulated
.NET types.

 You also learned about the important differences between entities and value-typed
objects in NHibernate. Entities have their own identity and lifecycle, whereas value-
typed objects are dependent on an entity and are persisted with by-value semantics.
NHibernate allows fine-grained object models with fewer tables than persistent classes.

 Finally, we introduced the three well-known inheritance-mapping strategies in
NHibernate. We also covered associations and collections mapping; and you imple-
mented and mapped your first parent/child association between persistent classes,
using database foreign key fields and the cascading of operations.

 With this understanding, you can experiment with NHibernate and handle most
common mapping scenarios, and perhaps some of the thornier ones too. As you
become familiar with creating domain models and persisting them with NHibernate,
you may face other architectural challenges. We next investigate the dynamic aspects
of the object/relational mismatch, including a much deeper study of the cascaded
operations we introduced and the lifecycle of persistent objects.

Working with
 persistent objects
You now understand how NHibernate and ORM solve the static, structural aspects
of the object/relational mismatch introduced in section 1.3.1. More specifically,
you learned how object-oriented structures can be mapped to relational database
structures to address issues of granularity, identity, inheritance, polymorphism,
and associations.

 This chapter covers another crucial subject—the dynamic, behavioral aspects of
the object/relational mismatch. Success with NHibernate will not be guaranteed by
simply mapping your domain classes to your databases. You must understand the
dynamic nature of the problems that come into play at runtime, and which greatly
affect the performance and stability of your applications. In our experience, many
developers focus mostly on the structural mismatch and rarely pay attention to the
more dynamic behavioral aspects.

This chapter covers
■ The lifecycle of objects in an NHibernate application
■ Using the session persistence manager
■ Transitive persistence
■ Efficient fetching strategy
100

101The persistence lifecycle
 In this chapter, we discuss the lifecycle of objects—how an object becomes persistent,
and how it stops being considered persistent—and the method calls and other actions
that trigger these transitions. The NHibernate persistence manager, the ISession, is
responsible for managing object state, so you’ll learn how to use this important API.

 Retrieving object graphs efficiently is another central concern, so we introduce the
basic strategies in this chapter. NHibernate provides several ways to specify queries
that return objects without losing much of the power inherent to SQL. Because net-
work latency caused by remote access to the database can be an important limiting fac-
tor in the overall performance of .NET applications, you must learn how to retrieve a
graph of objects with a minimal number of database hits.

 Let’s start by discussing objects, their lifecycle, and the events that trigger a change
of persistent state. These basics will give you the background you need when working
with your object graph, so you’ll know when and how to load and save your objects.
The material may be rather formal, but a solid understanding of the persistence lifecycle
will greatly help you in your application development with NHibernate.

4.1 The persistence lifecycle
Because NHibernate is a transparent persistence mechanism, classes are unaware of
their own persistence capability. It’s therefore possible to write application logic that
is unaware of whether the objects it operates on represent persistent state or tempo-
rary state that exists only in memory. The application shouldn’t necessarily need to
care that an object is persistent when invoking its methods.

 But in any application with persistent state, the application must interact with the
persistence layer whenever it needs to transmit state held in memory to the database
(or vice versa). To do this, you call NHibernate’s persistence API. When interacting
with the persistence mechanism that way, it’s necessary for the application to concern
itself with the state and lifecycle of an object with respect to persistence. We’ll refer to
this as the persistence lifecycle.

 Different ORM implementations use different terminology and define different
states and state transitions for the
persistence lifecycle. Moreover, the
object states used internally may be
different from those exposed to the
client application. NHibernate
defines only three states, hiding the
complexity of its internal implemen-
tation from the client code. In this
section, we explain these three states:
transient, persistent, and detached.

 Figure 4.1 shows these states and
their transitions in a state chart. You
can also see the method calls to the
persistence manager that trigger

Transient
new

Persistent

Detached

Save()
SaveOrUpdate()

Evict()
Close() *
Clear() *

Update()
SaveOrUpdate()
Lock()

Delete()
Get()

Load()
Find()

Enumerable()
etc.

* affects all instances in a Session

garbage

garbage

Figure 4.1 States of an object and transitions in an
NHibernate application

102 CHAPTER 4 Working with persistent objects
transitions. We discuss this chart in this section; refer to it later whenever you need
an overview.

 In its lifecycle, an object can transition from a transient object to a persistent
object to a detached object. Let’s take a closer look at each of these states.

4.1.1 Transient objects

When using NHibernate, simply creating objects using the new operator will not make
them immediately persistent. At this point, their state is transient, which means they
aren’t associated with any database table row. This is similar to any other object in a
.NET application. As you would expect, their state is lost as soon as they’re dereferenced
(no longer referenced by any other object) and they become inaccessible and avail-
able for garbage collection.

 NHibernate considers all transient instances to be nontransactional; a modification
to the state of a transient instance isn’t made in the context of any transaction. This
means NHibernate doesn’t provide any rollback functionality for transient objects. In
fact, NHibernate doesn’t roll back any object changes, as you’ll see later.

 Objects that are referenced only by other transient instances are, by default, also
transient. To transition an object from transient to persistent state, there are two
choices. You can Save() it using the persistence manager, or create a reference to it from
an already-persistent instance and take advantage of transitive persistence (section 4.3).

4.1.2 Persistent objects

A persistent instance is any instance with a database identity, as defined in section 3.5.
That means a persistent object has a primary key value set as its database identifier.

 Persistent instances might be objects instantiated by the application and then
made persistent by calling the Save() method of the persistence manager (the NHi-
bernate ISession, discussed in more detail later in this chapter). Persistent instances
are then associated with the persistence manager. They might even be objects that
became persistent when a reference was created from another persistent object
already associated with a persistence manager. Alternatively, a persistent instance
might be an instance retrieved from the database by execution of a query, by an iden-
tifier lookup, or by navigating the object graph starting from another persistent
instance. In other words, persistent instances are always associated with an ISession
and are transactional.

 Persistent instances participate in transactions—their state is synchronized with
the database at the end of the transaction. When a transaction commits, state held in
memory is propagated to the database by the execution of SQL INSERT, UPDATE, and
DELETE statements. This procedure can also occur at other times. For example, NHi-
bernate may synchronize with the database before execution of a query. This ensures
that queries are aware of changes made earlier during the transaction.

 We call a persistent instance new if it has been allocated a primary key value but
hasn’t yet been inserted into the database. The new persistent instance will remain
“new” until synchronization occurs.

103The persistence lifecycle
 Of course, NHibernate doesn’t have to update the database row of every persistent
object in memory at the end of the transaction. Saving objects that haven’t changed
would be time consuming and unnecessary. ORM software must have a strategy for
detecting which persistent objects have been modified by the application in the trans-
action. We call this automatic dirty checking (an object with modifications that haven’t
yet been propagated to the database is considered dirty). Again, this state isn’t visible
to the application. We call this feature transparent transaction-level write-behind, meaning
that NHibernate propagates state changes to the database as late as possible but hides
this detail from the application.

 NHibernate can detect exactly which attributes have been modified, so it’s possible
to include only the columns that need updating in the SQL UPDATE statement. This
may bring performance gains, particularly with certain databases. But it isn’t usually a
significant difference; and, in theory, it could harm performance in some environ-
ments. So, by default, NHibernate includes all columns in the SQL UPDATE statement.
NHibernate can generate and cache this basic SQL once at startup, rather than on the
fly each time an object is saved. If you only want to update modified columns, you can
enable dynamic SQL generation by setting dynamic-update="true" in a class map-
ping. Note that this feature is extremely difficult and time consuming to implement in
a hand-coded persistence layer. We talk about NHibernate’s transaction semantics and
the synchronization process, or flushing, in more detail in the next chapter.

 Finally, you can make a persistent instance transient via a Delete() call to the per-
sistence manager API, resulting in the deletion of the corresponding row of the data-
base table.

4.1.3 Detached objects

When a transaction completes and the data is written to the database, the persistent
instances associated with the persistence manager still exist in memory. If the transac-
tion was successful, the state of these instances has been synchronized with the data-
base. In ORM implementations with process-scoped identity (see the following sections),
the instances retain their association to the persistence manager and are still consid-
ered persistent.

 But in the case of NHibernate, these instances lose their association with the persis-
tence manager when you Close() the ISession. Because they’re no longer associated
with a persistence manager, we refer to these objects as detached. Detached instances
may no longer be guaranteed to be synchronized with database state; they’re no lon-
ger under the management of NHibernate. But they still contain persistent data. It’s
possible, and common, for the application to retain a reference and update a
detached object outside of a transaction and therefore without NHibernate tracking
the changes.

 Fortunately, NHibernate lets you use these instances in a new transaction by reasso-
ciating them with a new persistence manager. After reassociation, they’re considered
persistent again. This feature has a deep impact on how multitiered applications may
be designed. The ability to return objects from one transaction to the presentation

104 CHAPTER 4 Working with persistent objects
layer and later reuse them in a new transaction is one of NHibernate’s main selling
points. We discuss this usage in the next chapter as an implementation technique for
long-running application transactions. We also show you how to avoid the DTO (anti-)
pattern by using detached objects in section 10.3.1.

 NHibernate also provides an explicit way of detaching instances: the Evict()
method of the ISession. This method is typically used only for cache management (a
performance consideration). It’s not common to perform detachment explicitly.
Rather, all objects retrieved in a transaction become detached when the ISession is
closed or when they’re serialized (if they’re passed remotely, for example). NHiber-
nate doesn’t need to provide functionality for controlling detachment of subgraphs.
Instead, the application can control the depth of the fetched subgraph (the instances
that are currently loaded in memory) using the query language or explicit graph navi-
gation. Then, when the ISession is closed, this entire subgraph (all objects associated
with a persistence manager) becomes detached.

 Let’s look at the different states again, but this time consider the scope of object
identity.

4.1.4 The scope of object identity

As application developers, we identify an object using .NET object identity (a==b). If
an object changes state, is its .NET identity guaranteed to be the same in the new state?
In a layered application, that may not be the case.

 In order to explore this topic, it’s important to understand the relationship between
.NET identity, object.ReferenceEquals(a,b), and database identity, a.Id==b.Id.
Sometimes they’re equivalent; sometimes they aren’t. We refer to the conditions under
which .NET identity is equivalent to database identity as the scope of object identity.

 For this scope, there are three common choices:

■ A primitive persistence layer with no identity scope makes no guarantees that if
a row is accessed twice, the same .NET object instance will be returned to the
application. This becomes problematic if the application modifies two different
instances that both represent the same row in a single transaction (how do you
decide which state should be propagated to the database?).

■ A persistence layer using transaction-scoped identity guarantees that, in the
context of a single transaction, only one object instance represents a particular
database row. This avoids the previous problem and also allows for some cach-
ing to be done at the transaction level.

■ Process-scoped identity goes one step further and guarantees that there is only
one object instance representing the row in the whole process (.NET CLR).

For a typical web or enterprise application, transaction-scoped identity is preferred.
Process-scoped identity offers potential advantages in terms of cache utilization and
the programming model for reuse of instances across multiple transactions; but in a
pervasively multithreaded application, the cost of always synchronizing shared access
to persistent objects in the global identity map is too high. It’s simpler, and more

105The persistence lifecycle
scalable, to have each thread work with a distinct set of persistent instances in each
transaction scope.

 Speaking loosely, we can say that NHibernate implements transaction-scoped iden-
tity. Actually, the NHibernate identity scope is the ISession instance, so identical objects
are guaranteed if the same persistence manager (the ISession) is used for several oper-
ations. But an ISession isn’t the same as a (database) transaction—it’s a much more
flexible element. We explore the differences and the consequences of this concept in
the next chapter. Let’s focus on the persistence lifecycle and identity scope again.

 If you request two objects using the same database identifier value in the same ISes-
sion, the result will be two references to the same in-memory object. The following
example demonstrates this behavior, with several Load() operations in two ISessions:

ISession session1 = sessionFactory.OpenSession();
ITransaction tx1 = session1.BeginTransaction();
// Load Category with identifier value "1234"
object a = session1.Load<Category>(1234);
object b = session1.Load<Category>(1234);
if (object.ReferenceEquals(a,b)) {
 System.Console.WriteLine("a and b are identical.");
}
tx1.Commit();
session1.Close();
ISession session2 = sessionFactory.OpenSession();
ITransaction tx2 = session2.BeginTransaction();
// Let's use the generic version of Load()
Category b2 = session2.Load<Category>(1234);
if (! object.ReferenceEquals(a,b2)) {
 System.Console.WriteLine("a and b2 are not identical.");
}
tx2.Commit();
session2.Close();

Object references a and b not only have the same database identity, they also have the
same .NET identity because they were loaded in the same ISession. Once outside this
boundary, NHibernate doesn’t guarantee .NET identity, so a and b2 aren’t identical
and the message is printed on the console. A test for database iden-
tity—a.Id==b2.Id—would still return true.

 To further complicate our discussion of identity scopes, we need to consider how
the persistence layer handles a reference to an object outside its identity scope. For
example, for a persistence layer with transaction-scoped identity such as NHibernate,
is a reference to a detached object (that is, an instance persisted or loaded in a previ-
ous, completed session) tolerated?

4.1.5 Outside the identity scope

If an object reference leaves the scope of guaranteed identity, we call it a reference to a
detached object. Why is this concept useful?

 In Windows applications, you usually don’t maintain a database transaction across
a user interaction. Users take a long time to think about modifications, so for scalability

106 CHAPTER 4 Working with persistent objects
reasons, you must keep database transactions short and release database resources as
soon as possible. In this environment, it’s useful to be able to reuse a reference to a
detached instance. For example, you might want to send an object retrieved in one unit
of work to the presentation tier and later reuse it in a second unit of work, after it’s been
modified by the user. For ASP.NET applications this doesn’t apply, because you shouldn’t
keep business objects in memory after the page has been rendered—instead, you reload
them on each request, and they don’t require reattachment.

 When you need to reattach objects, you won’t usually wish to reattach the entire
object graph in the second unit of work. For performance (and other) reasons, it’s
important that reassociation of detached instances be selective. NHibernate supports
selective reassociation of detached instances. This means the application can efficiently reat-
tach a subgraph of a graph of detached objects with the current (“second”) NHibernate
ISession. Once a detached object has been reattached to a new NHibernate persis-
tence manager, it may be considered a persistent instance again, and its state will be
synchronized with the database at the end of the transaction. This is due to NHiber-
nate’s automatic dirty checking of persistent instances.

 Reattachment may result in the creation of new rows in the database when a refer-
ence is created from a detached instance to a new transient instance. For example, a
new Bid may have been added to a detached Item while it was on the presentation
tier. NHibernate can detect that the Bid is new and must be inserted in the database.
For this to work, NHibernate must be able to distinguish between a “new” transient
instance and an “old” detached instance. Transient instances (such as the Bid) may
need to be saved; detached instances (such as the Item) may need to be reattached
(and later updated in the database).

 There are several ways to distinguish between transient and detached instances,
but the simplest approach is to look at the value of the identifier property. NHibernate
can examine the identifier of a transient or detached object on reattachment and
treat the object (and the associated graph of objects) appropriately. We discuss this
important issue further in section 4.3.4.

 If you want to take advantage of NHibernate’s support for reassociation of
detached instances in your applications, you need to be aware of NHibernate’s identity
scope when designing your application—that is, the ISession scope that guarantees
identical instances. As soon as you leave that scope and have detached instances,
another interesting concept comes into play.

 We need to discuss the relationship between .NET equality and database identity.
For a recap of equality, see section 3.5.1. Equality is an identity concept that we, the
class developers, can control. Sometimes we have to use it for classes that have
detached instances. .NET equality is defined by the implementation of the Equals()
and GetHashCode() methods in the domain model’s persistent classes.

4.1.6 Implementing Equals() and GetHashCode()

The Equals() method is called by application code or, more important, by the .NET
collections. An ISet collection (in the library Iesi.Collections), for example, calls

107The persistence lifecycle
Equals() on each object you put in the ISet, to determine (and prevent) dupli-
cate elements.

 First let’s consider the default implementation of Equals(), defined by System.
Object, which uses a comparison by .NET identity. NHibernate guarantees that there
is a unique instance for each row of the database inside an ISession. Therefore, the
default identity Equals() is appropriate if you never mix instances—that is, if you
never put detached instances from different sessions into the same ISet. (The issue
we’re exploring is also visible if detached instances are from the same session but have
been serialized and deserialized in different scopes.) But as soon as you have instances
from multiple sessions, it becomes possible to have an ISet containing two Items that
each represent the same row of the database table but don’t have the same .NET iden-
tity. This would almost always be semantically wrong. Nevertheless, it’s possible to
build a complex application using the built-in identity equality, as long as you exercise
discipline when dealing with detached objects from different sessions (and keep an
eye on serialization and deserialization). One nice thing about this approach is that
you don’t have to write extra code to implement your own notion of equality.

 If this concept of equality isn’t what you want, you have to override Equals() in
your persistent classes. Keep in mind that when you override Equals(), you must
always also override GetHashCode() so the two methods are consistent (if two objects
are equal, they must have the same hash code). Let’s look at some of the ways you can
override Equals() and GetHashCode() in persistent classes.
USING DATABASE IDENTIFIER EQUALITY

A seemingly clever approach is to implement Equals() to compare just the database
identifier property (usually a surrogate primary key) value:

public class User {
 //...
 public override bool Equals(object other) {
 if (object.ReferenceEquals(this,other)) return true;
 if (this.Id==null) return false;
 if (!(other is User)) return false;
 User that = (User) other;
 return this.Id == that.Id;
 }
 public override int GetHashCode() {
 return Id==null ?
 base.GetHashCode(this) :
 Id.GetHashCode();
 }
}

Notice how this Equals() method falls back to .NET identity for transient instances (if
id==null) that don’t have a database identifier value assigned yet. This is reasonable,
because they can’t have the same persistent identity as another instance.

 Unfortunately, this solution has one huge problem: NHibernate doesn’t assign
identifier values until an entity is saved. If the object is added to an ISet before being
saved, its hash code changes while it’s contained by the ISet, contrary to the contract

108 CHAPTER 4 Working with persistent objects
defined by this collection. In particular, this problem makes cascade saves (discussed
later in this chapter) useless for sets. We strongly discourage this solution (database
identifier equality).

 You could fix this problem by assigning an identifier yourself at the creation of the
entities and using versioning to distinguish transient and detached instances.
COMPARING BY VALUE

A better way is to include all persistent properties of the persistent class, apart from
any database identifier property, in the Equals() comparison. This is how most peo-
ple perceive the meaning of Equals(); we call it by value equality.

 When we say “all properties,” we don’t mean to include collections. Collection state
is associated with a different table, so it seems wrong to include it. More important, you
don’t want to force the entire object graph to be retrieved just to perform Equals(). In
the case of User, this means you shouldn’t include the items collection (the items sold
by this user) in the comparison. Here is the implementation you could use:

public class User {
 //...
 public override bool Equals(object other) {
 if (object.ReferenceEquals(this,other)) return true;
 if (!(other is User)) return false;
 User that = (User) other;
 if (! this.Username == that.Username)
 return false;
 if (! this.Password == that.Password)
 return false;
 return true;
 }
 public override int GetHashCode() {
 int result = 14;
 result = 29 * result + Username.GetHashCode();
 result = 29 * result + Password.GetHashCode();
 return result;
 }
}

But again, this approach has two problems:

■ Instances from different sessions are no longer equal if one is modified (for
example, if the user changes his password).

■ Instances with different database identity (instances that represent different
rows of the database table) can be considered equal, unless some combination
of properties is guaranteed to be unique (the database columns have a unique
constraint). In the case of User, there is a unique property: Username.

To get to the solution we recommend, you need to understand the notion of a business
key.
USING BUSINESS KEY EQUALITY

A business key is a property, or some combination of properties, that is unique for each
instance with the same database identity. Essentially, it’s the natural key you’d use if you

109The persistence lifecycle
weren’t using a surrogate key. Unlike a natural primary key, it isn’t an absolute require-
ment that the business key never change—as long as it changes rarely, that’s enough.

 We argue that every entity should have a business key, even if it includes all proper-
ties of the class (this would be appropriate for some immutable classes). The business
key is what the user thinks of as uniquely identifying a particular record, whereas the
surrogate key is what the application and database use.

 Business key equality means that the Equals() method compares only the properties
that form the business key. This is a perfect solution that avoids all the problems
described earlier. The only downside is that it requires extra thought to identify the
correct business key in the first place. But this effort is required anyway; it’s important
to identify any unique keys if you want your database to help ensure data integrity via
constraint checking.

 For the User class, username is a great candidate business key. It’s never null, it’s
unique, and it changes rarely (if ever):

public class User {
 //...
 public override bool Equals(object other) {
 if (object.ReferenceEquals(this,other)) return true;
 if (!(other is User)) return false;
 User that = (User) other;
 return this.Username == that.Username);
 }
 public override int GetHashCode() {
 return Username.GetHashCode();
 }
}

For some other classes, the business key may be more complex, consisting of a combi-
nation of properties. For example, candidate business keys for the Bid class are the
item ID together with the bid amount, and the item ID together with the date
and time of the bid. A good business key for the BillingDetails abstract class is the
number together with the type (subclass) of billing details. Notice that it’s almost never
correct to override Equals() on a subclass and include another property in the com-
parison. It’s tricky to satisfy the requirements that equality be both symmetric and
transitive in this case; and, more important, the business key wouldn’t correspond to
any well-defined candidate natural key in the database (subclass properties may be
mapped to a different table).

 You may have noticed that the Equals() and GetHashCode() methods always
access the properties of the other object via the getter properties. This is important,
because the object instance passed as other might be a proxy object, not the actual
instance that holds the persistent state. This is one point where NHibernate isn’t com-
pletely transparent, but it’s a good practice to use properties instead of direct instance
variable access anyway.

 Finally, take care when you’re modifying the value of the business key properties;
don’t change the value while the domain object is in a set.

110 CHAPTER 4 Working with persistent objects
 So far, we’ve talked about how the persistence manager behaves when working
with instances that are transient, persistent, or detached. We’ve also discussed issues of
scope, and the importance of equality and identity. It’s now time to take a closer look
at the persistence manager and explore the NHibernate ISession API in greater
detail. We come back to detached objects in more detail in the next chapter.

4.2 The persistence manager
Any transparent persistence tool like NHibernate will include some form of persistence
manager API, which usually provides services for the following:

■ Performing basic CRUD operations
■ Executing queries
■ Controlling transactions
■ Managing the transaction-level cache

The persistence manager can be exposed by several different interfaces (in the case of
NHibernate, they include ISession, IQuery, ICriteria, and ITransaction). Under
the covers, the implementations of these interfaces are coupled tightly.

 The central interface between the application and NHibernate is ISession; it’s
your starting point for all the operations just listed. For most of the rest of this book,
we refer to the persistence manager and the session interchangeably; this is consistent
with usage in the NHibernate community.

 How do you start using the session? At the beginning of a unit of work, you create
an instance of ISession using the application’s ISessionFactory. The application
may have multiple ISessionFactorys if it accesses multiple datasources. But you
should never create a new ISessionFactory just to service a particular request—
creation of an ISessionFactory is extremely expensive. On the other hand, ISession
creation is extremely inexpensive; the ISession doesn’t even obtain an ADO.NET
IDbConnection until a connection is required.

 After opening a new session, you use it to load and save objects. Note that this sec-
tion explains some of the transitions shown earlier in figure 4.1.

4.2.1 Making an object persistent

The first thing you want to do with an ISession is make a new transient object persis-
tent. To do so, you use the Save() method:

User user = new User();
user.Name.Firstname = "Mark";
user.Name.Lastname = "Monster";
using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 session.Save(user);
 session.Transaction.Commit();
}

First, you instantiate a new transient object user as usual. You can also instantiate it
after opening an ISession; they aren’t related yet. You open a new ISession using

111The persistence manager
the ISessionFactory referred to by sessionFactory, and then you start a new data-
base transaction.

 A call to Save() makes the transient instance of User persistent. It’s now associated
with the current ISession. But no SQL INSERT has yet been executed; the NHibernate
ISession never executes any SQL statement until absolutely necessary.

 The changes made to persistent objects must be synchronized with the database at
some point. This happens when you Commit() the NHibernate ITransaction. In this
case, NHibernate obtains an ADO.NET connection (and transaction) and issues a sin-
gle SQL INSERT statement. Finally, the ISession is closed, and the ADO.NET connec-
tion is released.

 Note that it’s better (but not required) to fully initialize the User instance before
associating it with the ISession. The SQL INSERT statement contains the values that
were held by the object at the point when Save() was called. You can, of course, modify
the object after calling Save(), and your changes will be propagated to the database as
a SQL UPDATE.

 Everything between session.BeginTransaction() and Transaction.Commit()
occurs in one database transaction. We haven’t discussed transactions in detail yet; we
leave that topic for the next chapter. But keep in mind that all database operations in
a transaction scope are atomic—they completely succeed or completely fail. If one of the
UPDATE or INSERT statements made on Transaction.Commit() fails, all changes made
to persistent objects in this transaction will be rolled back at the database level. But NHi-
bernate does not roll back in-memory changes to persistent objects; their state remains
exactly as you left it. This is reasonable because a failure of a database transaction is nor-
mally non-recoverable, and you have to discard the failed ISession immediately.

4.2.2 Updating the persistent state of a detached instance

Modifying the user after the session is closed has no effect on its persistent represen-
tation in the database. When the session is closed, user becomes a detached instance.
But it may be reassociated with a new Session some time later by calling Update()
or Lock().

 Let’s first look at the Update() method. Using Update() forces an update to the
persistent state of the object in the database; a SQL UPDATE is scheduled and will be
later committed. Here’s an example of detached object handling:

user.Password = "secret";
using(ISession sessionTwo = sessionFactory.OpenSession())
 using(sessionTwo.BeginTransaction()) {
 sessionTwo.Update(user);
 user.Username = "jonny";
 sessionTwo.Transaction.Commit();
 }

It doesn’t matter if the object is modified before or after it’s passed to Update(). The
important thing is that the call to Update() is used to reassociate the detached instance
with the new ISession and the current transaction. NHibernate will treat the object as

112 CHAPTER 4 Working with persistent objects
dirty and therefore schedule the SQL UPDATE regardless of whether the object has been
updated. This makes Update() a safe way to reassociate objects with a Session, because
you know changes will be propagated to the database. There is one exception: when
you’ve enabled select-before-update in the persistent class mapping. With this
option enabled, a call to Update() will make NHibernate determine whether the object
is dirty rather than assuming it is. It does so by executing a SELECT statement and com-
paring the object’s current state to the current database state. This is still a “safe”
option, even though NHibernate won’t force an update if it isn’t needed.

 Now, let’s look a the Lock() method. A call to Lock() associates the object with the
ISession without forcing NHibernate to treat the object as dirty. Consider this example:

using(ISession sessionTwo = sessionFactory.OpenSession()){
 using(sessionTwo.BeginTransaction()) {
 sessionTwo.Lock(user, LockMode.None);
 user.Password = "secret";
 user.LoginName = "jonny";
 sessionTwo.Transaction.Commit();
 }
}

When you’re using Lock(), it does matter whether changes are made before or after the
object is associated with the session. Changes made before the call to Lock() aren’t prop-
agated to the database, because NHibernate hasn’t witnessed those changes; you only
use Lock() if you’re sure the detached instance hasn’t been modified beforehand.

 The previous code specifies LockMode.None, which tells NHibernate not to per-
form a version check or obtain any database-level locks when reassociating the object
with the ISession. If we specified LockMode.Read or LockMode.Upgrade, NHibernate
would execute a SELECT statement in order to perform a version check (and to set an
upgrade lock). We take a detailed look at NHibernate lock modes in the next chapter.
Having discussed how objects are treated when you reassociate them with a Session,
let’s now see what happens when you retrieve objects.

4.2.3 Retrieving a persistent object

The ISession is also used to query the database and retrieve existing persistent
objects. NHibernate is especially powerful in this area, as you’ll see later in this chap-
ter and in chapter 7. But special methods are provided on the ISession API for the
simplest kind of query: retrieval by identifier. One of these methods is Get(), demon-
strated here:

int userID = 1234;
using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 User user = (User) session.Get(typeof(User), userID);
 session.Transaction.Commit();
}

The retrieved object user may now be passed to the presentation layer for use outside
the transaction as a detached instance (after the session has been closed). If no row
with the given identifier value exists in the database, the Get() returns null.

113The persistence manager
Since NHibernate 1.2, you can use .NET 2.0 generics:

User user = session.Get<User>(userID);

Next, we explain the concept of automatic dirty checking.

4.2.4 Updating a persistent object transparently

Any persistent object returned by Get() or any other kind of query is already associ-
ated with the current ISession and transaction context. It can be modified, and its
state will be synchronized with the database. This mechanism is called automatic dirty
checking, which means NHibernate will track and save the changes you make to an
object inside a session:

int userID = 1234;
using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 User user = (User) session.Get(typeof(User), userID);
 user.Password = "secret";
 session.Transaction.Commit();
}

First you retrieve the object from the database with the given identifier. You modify
the object, and these modifications are propagated to the database when Transac-
tion.Commit() is called. Of course, as soon as you close the ISession, the instance is
considered detached. Batch updates are also possible because NHibernate has been
tweaked to use the ADO.NET 2.0 batching internal feature. Enabling this feature
makes NHibernate perform bulk updates; these updates therefore become much
faster. All you have to do is define the batch size as an NHibernate property:

<property name="hibernate.adonet.batch_size">16</property>

By default, the batch size is 0, which means this feature is disabled.
 This feature currently works only on .NET 2.0 when using a SQL Server database.

And because it uses .NET reflection, it may not work in some restricted environments.
 Finally, when using this feature, ADO.NET 2.0 doesn’t return the number of rows

affected by each statement in the batch, which means NHibernate may not perform
optimistic concurrency checking correctly. For example, if one statement affects two
rows and another statement affects no rows (instead of affecting one each), NHiber-
nate will only know that two rows have been affected, and conclude that everything
went OK.

4.2.5 Making an object transient

In many use cases, you need persistent (or detached) objects to become transient
again, meaning they will no longer have corresponding data in the database. As we
discussed at the beginning of this chapter, persistent objects are those that are in the
session and have corresponding data in the database. Making them transient
removes their persistent state from the database. You can easily do this using the
Delete() method:

114 CHAPTER 4 Working with persistent objects
int userID = 1234;
using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 User user = session.Get<User>(userID);
 session.Delete(user);
 session.Transaction.Commit();
}

The SQL DELETE is executed only when the ISession is synchronized with the database
at the end of the transaction.

 After the ISession is closed, the user object is considered an ordinary transient
instance. The transient instance is destroyed by the garbage collector if it’s no longer
referenced by any other object; both the in-memory instance and the persistent data-
base row are removed.

 Similarly, detached objects may be made transient. (Detached objects have corre-
sponding state in the database but aren’t in the ISession.) You don’t have to reattach
a detached instance to the session with Update() or Lock(). Instead, you can directly
delete a detached instance as follows:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 session.Delete(user);
 session.Transaction.Commit();
}

In this case, the call to Delete() does two things: it associates the object with the ISes-
sion and then schedules the object for deletion, executed on Transaction.Commit().

 You now know the persistence lifecycle and the basic operations of the persistence
manager. Using these concepts together with the persistent class mappings we dis-
cussed in chapter 3, you can create your own small NHibernate application. (If you
like, you can jump to chapter 10 and read about a handy NHibernate helper class for
ISessionFactory and ISession management.) Keep in mind that we haven’t shown
you any exception-handling code so far, but you should be able to figure out the try/
catch blocks yourself (as in chapter 2). Map some simple entity classes and compo-
nents, and then store and load objects in a standalone console application (write a
Main method). But as soon as you try to store associated entity objects—that is, when
you deal with a more complex object graph—you’ll see that calling Save() or
Delete() on each object of the graph isn’t an efficient way to write applications.

 You’d like to make as few calls to the ISession as possible. Transitive persistence pro-
vides a more natural way to force object state changes and to control the persistence
lifecycle.

4.3 Using transitive persistence in NHibernate
Real, nontrivial applications deal not with single objects but rather with graphs of
objects. When the application manipulates a graph of persistent objects, the result
may be an object graph consisting of persistent, detached, and transient instances.
Transitive persistence is a technique that allows you to propagate persistence to transient
and detached subgraphs automatically.

115Using transitive persistence in NHibernate
 For example, if we add a newly instantiated Category to the already persistent hier-
archy of categories, it should automatically become persistent without a call to
session.Save(). We gave a slightly different example in chapter 3 when we mapped a
parent/child relationship between Bid and Item. In that case, not only were bids auto-
matically made persistent when they were added to an item, but they were also auto-
matically deleted when the owning item was deleted.

 More than one model exists for transitive persistence. The best known is persistence
by reachability, which we discuss first. Although some basic principles are the same, NHi-
bernate uses its own, more powerful model, as you’ll see later.

4.3.1 Persistence by reachability

An object persistence layer is said to implement persistence by reachability if any instance
becomes persistent when the application creates an object reference to the instance
from another instance that is already persistent. This behavior is illustrated by the
object diagram (note that this isn’t a class diagram) in figure 4.2.

 In this example, Computer is a persistent object. The objects Desktop PCs and
Monitors are also persistent; they’re reachable from the Computer Category instance.
Electronics and Cell Phones are transient. Note that we assume navigation is possi-
ble only to child categories and not to the parent—for example, you can call
computer.ChildCategories. Persistence by reachability is a recursive algorithm: all
objects reachable from a persistent instance become persistent either when the origi-
nal instance is made persistent or just before in-memory state is synchronized with the
data store.

 Persistence by reachability guarantees referential integrity; you can re-create any
object graph by loading the persistent root object. An application may walk the object
graph from association to association without worrying about the persistent state of
the instances. (SQL databases have a different approach to referential integrity, rely-
ing on foreign-key and other constraints to detect a misbehaving application.)

 In the purest form of persistence by reachability, the database has some top-level,
or root, object from which all persistent objects are reachable. Ideally, an instance
should become transient and be deleted from the database if it isn’t reachable via ref-
erences from the root persistent object.

 Neither NHibernate nor other ORM solutions implement this form; there is no
analog of the root persistent object in a SQL database and no persistent garbage col-
lector that can detect unreferenced instances. Object-oriented data stores may imple-
ment a garbage-collection algorithm similar to the one implemented for in-memory

Electronics : Category

Computer : Category

Desktop PCs : Category Monitors : Category

Cell Phones : Category

Transient

Persistent

Persistent by
Reachability

Figure 4.2
Persistence by
reachability with
a root persistent
object

116 CHAPTER 4 Working with persistent objects
objects by the CLR, but this option isn’t available in the ORM world; scanning all tables
for unreferenced rows won’t perform acceptably.

 Persistence by reachability is at best a halfway solution. It helps you make transient
objects persistent and propagate their state to the database without many calls to the
persistence manager. But (at least, in the context of SQL databases and ORM) it isn’t a
full solution to the problem of making persistent objects transient and removing their
state from the database. This turns out to be a much more difficult problem. You can’t
simply remove all reachable instances when you remove an object; other persistent
instances may hold references to them (remember that entities can be shared). You
can’t even safely remove instances that aren’t referenced by any persistent object in
memory; the instances in memory are only a small subset of all objects represented in
the database. Let’s look at NHibernate’s more flexible transitive persistence model.

4.3.2 Cascading persistence with NHibernate

NHibernate’s transitive persistence model uses the same basic concept as persistence
by reachability—that is, object associations are examined to determine transitive state.
But NHibernate lets you specify a cascade style for each association mapping, which
offers more flexibility and fine-grained control for all state transitions. NHibernate
reads the declared style and cascades operations to associated objects automatically.

 By default, NHibernate does not navigate an association when searching for tran-
sient or detached objects, so saving, deleting, or reattaching a Category doesn’t affect
the child category objects. This is the opposite of the persistence-by-reachability
default behavior. If, for a particular association, you wish to enable transitive persis-
tence, you must override this default in the mapping metadata.

 You can map entity associations in metadata with the following attributes:

■ cascade="none", the default, tells NHibernate to ignore the association.
■ cascade="save-update" tells NHibernate to navigate the association when the

transaction is committed and when an object is passed to Save() or Update()
and save newly instantiated transient instances and persist changes to detached
instances.

■ cascade="delete" tells NHibernate to navigate the association and delete per-
sistent instances when an object is passed to Delete().

■ cascade="all" means to cascade both save-update and delete, as well as calls to
Evict and Lock.

■ cascade="all-delete-orphan" means the same as cascade="all" but, in addi-
tion, NHibernate deletes any persistent entity instance that has been removed
(dereferenced) from the association (for example, from a collection).

■ cascade="delete-orphan" has NHibernate delete any persistent entity instance
that has been removed (dereferenced) from the association (for example, from
a collection).

This association-level cascade style model is both richer and less safe than persistence by
reachability. NHibernate doesn’t make the same strong guarantees of referential

117Using transitive persistence in NHibernate
integrity that persistence by reachability provides. Instead, NHibernate partially dele-
gates referential integrity concerns to the foreign key constraints of the underlying
relational database. There is a good reason for this design decision: it lets NHibernate
applications use detached objects efficiently, because you can control reattachment of a
detached object graph at the association level.

 Let’s elaborate on the cascading concept with some example association map-
pings. We recommend that you read the next section in one turn, because each exam-
ple builds on the previous one. Our first example is straightforward; it lets you save
newly added categories efficiently.

4.3.3 Managing auction categories

System administrators can create new categories, rename
categories, and move subcategories around in the category
hierarchy. This structure is shown in figure 4.3.

 Now you map this class and the association:

<class name="Category" table="CATEGORY">
 ...
 <property name="Name" column="CATEGORY_NAME"/>
 <many-to-one
 name="ParentCategory"
 class="Category"
 column="PARENT_CATEGORY_ID"
 cascade="none"/>
 <set
 name="ChildCategories"
 table="CATEGORY"
 cascade="save-update"
 inverse="true">
 <key column="PARENT_CATEGORY_ID"/>
 <one-to-many class="Category"/>
 </set>
 ...
</class>

This is a recursive, bidirectional, one-to-many association, as briefly discussed in chap-
ter 3. The one-valued end is mapped with the <many-to-one> element and the Set
typed property with the <set>. Both refer to the same foreign key column:
PARENT_CATEGORY_ID.

 Suppose you create a new Category as a child category of Computer (see figure 4.4).

Electronics : Category

Computer : Category

Desktop PCs : Category Monitors : Category

Cell Phones : Category

Laptops : Category
Figure 4.4 Adding a new
Category to the object graph

0..*
Category

name : String

Figure 4.3 Category
class with association to
itself

118 CHAPTER 4 Working with persistent objects
You have several ways to create this new Laptops object and save it in the database. You
can go back to the database and retrieve the Computer category to which the new
Laptops category will belong, add the new category, and commit the transaction:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 Category computer = session.Get<Category>(computerId);
 Category laptops = new Category("Laptops");
 computer.ChildCategories.Add(laptops);
 laptops.ParentCategory = computer;
 session.Transaction.Commit();
}

The computer instance is persistent (attached to a session), and the ChildCategories
association has cascade-save enabled. Hence, this code results in the new laptops cat-
egory becoming persistent when Transaction.Commit() is called, because NHiber-
nate cascades the dirty-checking operation to the children of computer. NHibernate
executes an INSERT statement.

 Let’s do the same thing again, but this time create the link between Computer and
Laptops outside of any transaction (in a real application, it’s useful to manipulate an
object graph in a presentation tier—for example, before passing the graph back to
the persistence layer to make the changes persistent):

Category computer = ... // Loaded in a previous session
Category laptops = new Category("Laptops");
computer.ChildCategories.Add(laptops);
laptops.ParentCategory = computer;

The detached computer object and any other detached objects it refers to are now asso-
ciated with the new transient laptops object (and vice versa). You make this change to
the object graph persistent by saving the new object in a second NHibernate session:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 session.Save(laptops);
 session.Transaction.Commit();
}

NHibernate inspects the database identifier property of the parent category of lap-
tops and correctly creates the relationship to the Computer category in the database.
NHibernate inserts the identifier value of the parent into the foreign key field of the
new Laptops row in CATEGORY.

 Because cascade="none" is defined for the ParentCategory association, NHiber-
nate ignores changes to any of the other categories in the hierarchy (Computer, Elec-
tronics). It doesn’t cascade the call to Save() to entities referred to by this association.
If you’d enabled cascade="save-update" on the <many-to-one> mapping of Parent-
Category, NHibernate would have had to navigate the whole graph of objects in mem-
ory, synchronizing all instances with the database. This process would perform badly,
because a lot of useless data access would be required. In this case, you neither
needed nor wanted transitive persistence for the ParentCategory association.

119Using transitive persistence in NHibernate
 Why do you have cascading operations? You could have saved the laptop object, as
shown in the previous example, without any cascade mapping being used. Well, con-
sider the following case:

Category computer = ... // Loaded in a previous Session
Category laptops = new Category("Laptops");
Category laptopAccessories = new Category("Laptop Accessories");
Category laptopTabletPCs = new Category("Tablet PCs")
laptops.AddChildCategory(laptopAccessories);
laptops.AddChildCategory(laptopTabletPCs);
computer.AddChildCategory(laptops);

(Notice that you use the convenience method AddChildCategory() to set both ends
of the association link in one call, as described in chapter 3.)

 It would be undesirable to have to save each of the three new categories individ-
ually. Fortunately, because you mapped the ChildCategories association with
cascade="save-update", you don’t need to. The same code you used before to save
the single Laptops category will save all three new categories in a new session:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 session.Save(laptops);
 session.Transaction.Commit();
}

You’re probably wondering why the cascade style is called cascade="save-update"
rather than cascade="save". Having just made all three categories persistent previ-
ously, suppose you made the following changes to the category hierarchy in a subse-
quent request (outside of a session and transaction):

laptops.Name = "Laptop Computers";
laptopAccessories.Name = "Accessories & Parts";
laptopTabletPCs.Name = "Tablet Computers";
Category laptopBags = new Category("Laptop Bags");
laptops.AddChildCategory(laptopBags);

You add a new category as a child of the Laptops category and modify all three exist-
ing categories. The following code updates three old Category instances and inserts
the new one:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {

 session.Update(laptops);
 session.Transaction.Commit();
}

Specifying cascade="save-update" on the ChildCategories association accurately
reflects the fact that NHibernate determines what is needed to persist the objects
to the database. In this case, it reattaches/updates the three detached categories
(laptops, laptopAccessories, and laptopTabletPCs) and saves the new child cate-
gory (laptopBags).

120 CHAPTER 4 Working with persistent objects
 Notice that the last code example differs from the previous two session examples
only in a single method call. The last example uses Update() instead of Save()
because laptops was already persistent.

 You can rewrite all the examples to use the SaveOrUpdate() method. Then the
three code snippets are identical:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 session.SaveOrUpdate(laptops);
 session.Transaction.Commit();
}

The SaveOrUpdate() method tells NHibernate to propagate the state of an instance to
the database by creating a new database row if the instance is a new transient instance
or by updating the existing row if the instance is a detached instance. In other words,
it does exactly the same thing with the laptops category as cascade="save-update"
did with the child categories of laptops.

 One final question: how did NHibernate know which children were detached and
which were new transient instances?

4.3.4 Distinguishing between transient and detached instances

Because NHibernate doesn’t keep a reference to a detached instance, you have to let
NHibernate know how to distinguish between a detached instance like laptops (if it
was created in a previous session) and a new transient instance like laptopBags.

 A range of options is available. NHibernate assumes that an instance is an unsaved
transient instance if

■ The identifier property (if it exists) is null.
■ The version property (if it exists) is null.
■ You supply an unsaved-value in the mapping document for the class, and the

value of the identifier property matches.
■ You supply an unsaved-value in the mapping document for the version prop-

erty, and the value of the version property matches.
■ You supply an NHibernate IInterceptor and return true from IIntercep-

tor.IsUnsaved() after checking the instance in your code.

The example domain model uses the primitive type long everywhere as the identifier
property type. Because it isn’t nullable, you have to use the following identifier map-
ping in all your classes:

<class name="Category" table="CATEGORY">
 <id name="Id" unsaved-value="0">
 <generator class="native"/>
 </id>

</class>

The unsaved-value attribute tells NHibernate to treat instances of Category with an
identifier value of 0 as newly instantiated transient instances. The default value for the

121Retrieving objects
attribute unsaved-value is null if the type is nullable; otherwise, it’s the default value
of the type (0 for numerical types); because you’ve chosen long as the identifier prop-
erty type, you can omit the unsaved-value attribute in your auction application
classes. Technically, NHibernate tries to guess the unsaved-value by instantiating an
empty object and retrieving default property values from it.

You now have the knowledge to optimize your NHibernate application and reduce the
number of calls to the persistence manager if you want to save and delete objects.
Check the unsaved-value attributes of all your classes and experiment with detached
objects to get a feel for the NHibernate transitive persistence model.

 Having focused on how to persist objects with NHibernate, we can now switch per-
spectives and focus on how you go about retrieving (or loading) them.

4.4 Retrieving objects
Retrieving persistent objects from the database is one of the most interesting (and
complex) parts of working with NHibernate. NHibernate provides the following ways
to get objects out of the database:

■ Navigating the object graph, starting from an already loaded object, by access-
ing the associated objects through property accessor methods such as
aUser.Address.City. NHibernate automatically loads (or preloads) nodes of
the graph while you navigate the graph if the ISession is open.

■ Retrieving by identifier, which is the most convenient and performant method
when the unique identifier value of an object is known.

■ Using Hibernate Query Language (HQL), which is a full object-oriented query
language.

■ Using the NHibernate ICriteria API, which provides a type-safe and object-ori-
ented way to perform queries without the need for string manipulation. This
facility includes queries based on an example object.

■ Using native SQL queries and having NHibernate take care of mapping the
ADO.NET result sets to graphs of persistent objects.

NOTE Using LINQ for NHibernate is another option available. This lets you
specify your NHibernate queries using LINQ. At the time of writing, LINQ
for NHibernate looks very promising despite the fact it’s still a work in
progress. We don’t cover it in this book, but feel free to investigate fur-
ther by visiting the NHContrib project website.

Unsaved assigned identifiers
This approach works nicely for synthetic identifiers, but it breaks down in the case of
keys assigned by the application, including composite keys in legacy systems. We
discuss this issue in section 10.2. Avoid application-assigned (and composite) keys
in new applications if possible (this is important for non-versioned entities).

122 CHAPTER 4 Working with persistent objects
In your NHibernate applications, you’ll use a combination of these techniques. Each
retrieval method may use a different fetching strategy—that is, a strategy that defines
what part of the persistent object graph should be retrieved. The goal is to find the
best retrieval method and fetching strategy for every use case in your application while
at the same time minimizing the number of SQL queries for best performance.

 We don’t discuss each retrieval method in detail in this section; instead, we focus
on the basic fetching strategies and how to tune NHibernate mapping files for the best
default fetching performance for all methods. Before we look at the fetching strate-
gies, we provide an overview of the retrieval methods. Note that we mention the NHi-
bernate caching system, but we fully explore it in the next chapter.

 Let’s start with the simplest case: retrieving an object by giving its identifier value
(navigating the object graph should be self-explanatory). You saw a simple retrieval by
identifier earlier in this chapter, but there is more to know about it.

4.4.1 Retrieving objects by identifier

The following NHibernate code snippet retrieves a User object from the database:

User user = session.Get<User>(userID);

And here’s the code without .NET 2.0 generics:

User user = (User) session.Get(typeof(User), userID);

The Get() method is special because the identifier uniquely identifies a single
instance of a class. Hence it’s common for applications to use the identifier as a conve-
nient handle to a persistent object. Retrieval by identifier can use the cache when
retrieving an object, avoiding a database hit if the object is already cached.

 NHibernate also provides a Load() method:

User user = session.Load<User>(userID);

The difference between these two methods is trivial. If Load() can’t find the object in
the cache or database, an exception is thrown. The Load() method never returns
null. The Get() method returns null if the object can’t be found.

 The Load() method may return a proxy instead of a real persistent instance (when
lazy loading is enabled). A proxy is a placeholder that triggers the loading of the real
object when it’s accessed for the first time; we discuss proxies later in this section. It’s
important to understand that Load() will return a proxy even if there is no row with
the specified identifier; and an exception will be thrown if (and only if) NHibernate
tries to load it. On the other hand, Get() never returns a proxy because it must return
null if the entity doesn’t exist.

 Choosing between Get() and Load() is easy: if you’re certain the persistent object
exists, and nonexistence would be considered exceptional, Load() is a good option. If
you aren’t certain there is a persistent instance with the given identifier, use Get() and
test the return value to see if it’s null.

 What if this object is already in the session’s cache as an un-initialized proxy? In this
case, Load() will return the proxy as is, but Get() will initialize it before returning it.

123Retrieving objects
 Using Load() has a further implication: the application may retrieve a valid reference
(a proxy) to a persistent instance without hitting the database to retrieve its persistent
state. Load() may not throw an exception when it doesn’t find the persistent object in
the cache or database; the exception may be thrown later, when the proxy is accessed.

 This behavior has an interesting application. Let’s say lazy loading is enabled on
the class Category, and analyze the following code:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 Category parent = session.Load<Category>(anId);
 Console.WriteLine(parent.Id);
 Category child = new Category("test");
 child.ParentCategory = parent;
 session.Save(child);
 session.Transaction.Commit();
}

You first load a category. NHibernate doesn’t hit the database to do this: it returns a
proxy. Accessing the identifier of this proxy doesn’t cause its initialization (as long as
the identifier is mapped with the access strategy "property" or "nosetter"). Then
you link a new category to the proxy, and you save it. An INSERT statement is executed
to save the row with the foreign key value of the proxy’s identifier. No SELECT state-
ment is executed!

 Now, let’s explore arbitrary queries, which are far more flexible than retrieving
objects by identifier.

4.4.2 Introducing Hibernate Query Language

Hibernate Query Language (HQL) is an object-oriented dialect of the familiar rela-
tional query language SQL. HQL bears close resemblances to ODMG OQL and EJB-QL
(from Java); but unlike OQL, it’s adapted for use with SQL databases, and it’s much
more powerful and elegant than EJB-QL. JPA QL is a subset of HQL. HQL is easy to
learn with a basic knowledge of SQL.

 HQL isn’t a data-manipulation language like SQL. It’s used only for object retrieval,
not for updating, inserting, or deleting data. Object-state synchronization is the job of
the persistence manager, not the developer.

 Most of the time, you’ll only need to retrieve objects of a particular class and
restrict by the properties of that class. For example, the following query retrieves a
user by first name:

IQuery q = session.CreateQuery("from User u where u.Firstname = :fname");
q.SetString("fname", "Max");
IList<User> result = q.List<User>();

After preparing query q, you bind the identifier value to a named parameter, fname.
The result is returned as a generic IList of User objects.

 Note that, instead of obtaining this list, you can provide one using q.List
(myEmptyList), and NHibernate will fill it. This is useful when you want to use a col-
lection with additional functionalities (like advanced data binding).

124 CHAPTER 4 Working with persistent objects
 HQL is powerful, and even though you may not use the advanced features all the
time, you’ll need them for some difficult problems. For example, HQL supports the
following:

■ Applying restrictions to properties of associated objects related by reference or
held in collections (to navigate the object graph using query language).

■ Retrieving only properties of an entity or entities, without the overhead of load-
ing the entity itself in a transactional scope. This is sometimes called a report
query; it’s more correctly called projection.

■ Ordering the query’s results.
■ Paginating the results.
■ Aggregating with group by, having, and aggregate functions like sum, min, and max.
■ Performing outer joins when retrieving multiple objects per row.
■ Calling user-defined SQL functions.
■ Performing subqueries (nested queries).

We discuss all these features in chapter 8, together with the optional native SQL query
mechanism. We now look at another approach to issuing queries with NHibernate:
Query by Criteria.

4.4.3 Query by Criteria

The NHibernate Query by Criteria (QBC) API lets you build a query by manipulating cri-
teria objects at runtime. This approach lets you specify constraints dynamically with-
out direct string manipulations, but it doesn’t lose much of the flexibility or power of
HQL. On the other hand, queries expressed as criteria are often less readable than
queries expressed in HQL.

 Retrieving a user by first name is easy using a Criteria object:

ICriteria criteria = session.CreateCriteria(typeof(User));
criteria.Add(Expression.Like("Firstname", "Pierre Henri"));
IList result = criteria.List();

An ICriteria is a tree of ICriterion instances. The Expression class provides static
factory methods that return ICriterion instances. Once the desired criteria tree is
built, it’s executed against the database.

 Many developers prefer QBC, considering it a more object-oriented approach.
They also like the fact that the query syntax may be parsed and validated at compile
time, whereas HQL expressions aren’t parsed until runtime.

 The nice thing about the NHibernate ICriteria API is the ICriterion framework.
This framework allows extension by the user, which is difficult in the case of a query
language like HQL.

4.4.4 Query by Example

As part of the QBC facility, NHibernate supports Query by Example (QBE). The idea
behind QBE is that the application supplies an instance of the queried class with certain

125Retrieving objects
property values set (to nondefault values). The query returns all persistent instances
with matching property values. QBE isn’t a particularly powerful approach, but it can be
convenient for some applications. The following code snippet demonstrates an NHi-
bernate QBE:

User exampleUser = new User();
exampleUser.Firstname = "Max";
ICriteria criteria = session.CreateCriteria(typeof(User));
criteria.add(Example.Create(exampleUser));
IList result = criteria.List();

A typical use case for QBE is a search screen that allows users to specify a range of
property values to be matched by the returned result set. This kind of functionality
can be difficult to express cleanly in a query language; string manipulations would be
required to specify a dynamic set of constraints.

 Both the QBC API and the example query mechanism are discussed in more detail
in chapter 8.

 You now know the basic retrieval options in NHibernate. We focus on strategies for
fetching object graphs in the rest of this section. A fetching strategy defines what part
of the object graph (or, what subgraph) is retrieved with a query or load operation.

4.4.5 Fetching strategies

In traditional relational data access, you fetch all the data required for a particular
computation with a single SQL query, taking advantage of inner and outer joins to
retrieve related entities. Some primitive ORM implementations fetch data piecemeal,
with many requests for small chunks of data in response to the application’s navigat-
ing a graph of persistent objects. This approach doesn’t make efficient use of the rela-
tional database’s join capabilities. In fact, this data-access strategy scales poorly by
nature. One of the most difficult problems in ORM—probably the most difficult—is
providing for efficient access to relational data, given an application that prefers to
treat the data as a graph of objects.

 For the kinds of applications we’ve often worked with (multiuser, distributed, web,
and enterprise applications), object retrieval using many round trips to/from the
database is unacceptable. We argue that tools should emphasize the R in ORM to a
much greater extent than has been traditional.

 The problem of fetching object graphs efficiently (with minimal access to the data-
base) has often been addressed by providing association-level fetching strategies spec-
ified in metadata of the association mapping. The trouble with this approach is that
each piece of code that uses an entity requires a different set of associated objects. But
this isn’t enough. We argue that what is needed is support for fine-grained runtime
association fetching strategies. NHibernate supports both: it lets you specify a default
fetching strategy in the mapping file and then override it at runtime in code.

 NHibernate allows you to choose among four fetching strategies for any associa-
tion, in association metadata and at runtime:

126 CHAPTER 4 Working with persistent objects
■ Immediate fetching —The associated object is fetched immediately, using a
sequential database read (or cache lookup).

■ Lazy fetching —The associated object or collection is fetched “lazily,” when it’s
first accessed. This results in a new request to the database (unless the associ-
ated object is cached).

■ Eager fetching —The associated object or collection is fetched together with the
owning object, using a SQL outer join, and no further database request is
required.

■ Batch fetching —This approach may be used to improve the performance of lazy
fetching by retrieving a batch of objects or collections when a lazy association is
accessed. (Batch fetching may also be used to improve the performance of
immediate fetching.)

Let’s look more closely at each fetching strategy.
IMMEDIATE FETCHING

Immediate association fetching occurs when you retrieve an entity from the database
and then immediately retrieve another associated entity or entities in a further
request to the database or cache. Immediate fetching isn’t usually an efficient fetching
strategy unless you expect the associated entities to almost always be cached already.
LAZY FETCHING

When a client requests an entity and its associated graph of objects from the database,
it isn’t usually necessary to retrieve the whole graph of every (indirectly) associated
object. You wouldn’t want to load the whole database into memory at once; for exam-
ple, loading a single Category shouldn’t trigger the loading of all Items in that category.

 Lazy fetching lets you decide how much of the object graph is loaded in the first
database hit and which associations should be loaded only when they’re first accessed.
Lazy fetching is a foundational concept in object persistence and the first step to
attaining acceptable performance.

 Since NHibernate 1.2, all associations are configured for lazy fetching by default;
you can easily change this behavior by setting default-lazy="false" in <hibernate-
mapping> of your mapping files. But we recommend that you keep this strategy and
override it at runtime by queries that force eager fetching to occur.
EAGER (OUTER JOIN) FETCHING

Lazy association fetching can help reduce database load and is often a good default
strategy. But it’s like a blind guess as far as performance optimization goes.

 Eager fetching lets you explicitly specify which associated objects should be loaded
together with the referencing object. NHibernate can then return the associated
objects in a single database request, utilizing a SQL outer join. Performance optimiza-
tion in NHibernate often involves judicious use of eager fetching for particular trans-
actions. Even though default eager fetching may be declared in the mapping file, it’s
more common to specify the use of this strategy at runtime for a particular HQL or
criteria query.

127Retrieving objects
BATCH FETCHING

Batch fetching isn’t strictly an association fetching strategy; it’s a technique that may
help improve the performance of lazy (or immediate) fetching. Usually, when you
load an object or collection, your SQL WHERE clause specifies the identifier of the
object or the object that owns the collection. If batch fetching is enabled, NHibernate
looks to see what other proxied instances or uninitialized collections are referenced
in the current session and tries to load them at the same time by specifying multiple
identifier values in the WHERE clause.

 We aren’t great fans of this approach; eager fetching is almost always faster. Batch
fetching is useful for inexperienced users who wish to achieve acceptable performance
in NHibernate without having to think too hard about the SQL that will be executed.

 We now declare the fetching strategy for some associations in our mapping metadata.

4.4.6 Selecting a fetching strategy in mappings

NHibernate lets you select default association fetching strategies by specifying attri-
butes in the mapping metadata. You can override the default strategy using features of
NHibernate’s query methods, as you’ll see in chapter 8. A minor caveat: You don’t
have to understand every option presented in this section immediately; we recom-
mend that you get an overview first and use this section as a reference when you’re
optimizing the default fetching strategies in your application.

 A wrinkle in NHibernate’s mapping format means that collection mappings function
slightly differently than single-point associations; we cover the two cases separately. Let’s
first consider both ends of the bidirectional association between Bid and Item.
SINGLE POINT ASSOCIATIONS

For a <many-to-one> or <one-to-one> association, lazy fetching is possible only if the
associated class mapping enables proxying. For the Item class, you enable proxying by
specifying lazy="true" (since NHibernate 1.2, this is the default value):

<class name="Item" lazy="true">

Now, remember the association from Bid to Item:

<many-to-one name="item" class="Item">

When you retrieve a Bid from the database, the association property may hold an
instance of an NHibernate generated subclass of Item that delegates all method invoca-
tions to a different instance of Item that is fetched lazily from the database (this is the
more elaborate definition of an NHibernate proxy).

 In order to delegate method (and property) invocations, these members need to
be virtual. NHibernate 1.2 uses a validator that verifies that proxied entities have a
default constructor which isn’t private, that they aren’t sealed, that all public meth-
ods and properties are virtual, and that there is no public field. It’s possible to turn off
this validator; but you should carefully think about why you do that. Here is the ele-
ment to add to your configuration file to turn it off:

<property name="hibernate.use_proxy_validator">false</property>

128 CHAPTER 4 Working with persistent objects
Or you can do it programmatically, before building the session factory, using
cfg.Properties[NHibernate.Cfg.Environment.UseProxyValidator]="false".

 NHibernate uses two different instances so that even polymorphic associations can
be proxied—when the proxied object is fetched, it may be an instance of a mapped
subclass of Item (if there were any subclasses of Item, that is). You can even choose
any interface implemented by the Item class as the type of the proxy. To do so, declare
it using the proxy attribute, instead of specifying lazy="true":

<class name="Item" proxy="ItemInterface">

As soon as you declare the proxy or lazy attribute on Item, any single-point associa-
tion to Item is proxied and fetched lazily, unless that association overrides the fetch-
ing strategy by declaring the outer-join attribute.

 There are three possible values for outer-join:

■ outer-join="auto"—The default. When the attribute isn’t specified; NHiber-
nate fetches the associated object lazily if the associated class has proxying
enabled or eagerly using an outer join if proxying is disabled (default).

■ outer-join="true"—NHibernate always fetches the association eagerly using
an outer join, even if proxying is enabled. This allows you to choose different
fetching strategies for different associations to the same proxied class. It’s equiv-
alent to fetch="join".

■ outer-join="false"—NHibernate never fetches the association using an outer
join, even if proxying is disabled. This is useful if you expect the associated
object to exist in the second-level cache (see chapter 6). If it isn’t available in
the second-level cache, the object is fetched immediately using an extra SQL
SELECT. This option is equivalent to fetch="select".

If you wanted to re-enable eager fetching for the association, now that proxying is
enabled, you would specify

<many-to-one name="item" class="Item" outer-join="true">

For a one-to-one association (discussed in more detail in chapter 7), lazy fetching is
conceptually possible only when the associated object always exists. You indicate this
by specifying constrained="true". For example, if an item can have only one bid, the
mapping for the Bid is

<one-to-one name="item" class="Item" constrained="true">

The constrained attribute has a slightly similar interpretation to the not-null attri-
bute of a <many-to-one> mapping. It tells NHibernate that the associated object is
required and thus can’t be null.

 To enable batch fetching, you specify the batch-size in the mapping for Item:

<class name="Item" lazy="true" batch-size="9">

The batch size limits the number of items that may be retrieved in a single batch.
Choose a reasonably small number here.

129Retrieving objects
 You’ll meet the same attributes (outer-join, batch-size, and lazy) when we con-
sider collections, but the interpretation is slightly different.
COLLECTIONS

In the case of collections, fetching strategies apply not just to entity associations but
also to collections of values (for example, a collection of strings could be fetched by
an outer join).

 Just like classes, collections have their own proxies, which we usually call collection
wrappers. Unlike classes, the collection wrapper is always there, even if lazy fetching is
disabled (NHibernate needs the wrapper to detect collection modifications).

 Collection mappings may declare a lazy attribute, an outer-join attribute, neither,
or both (specifying both isn’t meaningful). The meaningful options are as follow:

■ Neither attribute specified —This option is equivalent to outer-join="false"
lazy="false". The collection is fetched from the second-level cache or by an
immediate extra SQL SELECT. This option is most useful when the second-level
cache is enabled for this collection.

■ outer-join="true"—NHibernate fetches the association eagerly using an
outer join. At the time of this writing, NHibernate is able to fetch only one col-
lection per SQL SELECT, so it isn’t possible to declare multiple collections
belonging to the same persistent class with outer-join="true".

■ lazy="true"—NHibernate fetches the collection lazily, when it’s first accessed.
Since NHibernate 1.2, this is the default option, and we recommend that you
keep this option as a default for all your collection mappings.

We don’t recommend eager fetching for collections, so you’ll map the item’s collec-
tion of bids with lazy="true". This option is almost always used for collection map-
pings (although it’s the default since NHibernate 1.2, we’ll continue to write it to insist
on it):

<set name="Bids" lazy="true">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

You can even enable batch fetching for the collection. In this case, the batch size
doesn’t refer to the number of bids in the batch; it refers to the number of collections
of bids:

<set name="Bids" lazy="true" batch-size="9">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

This mapping tells NHibernate to load up to nine collections of bids in one batch,
depending on how many uninitialized collections of bids are currently present in the
items associated with the session. In other words, if five Item instances have persistent
state in an ISession, and all have an uninitialized Bids collection, NHibernate will
automatically load all five collections in a single SQL query if one is accessed. If there

130 CHAPTER 4 Working with persistent objects
are 11 items, only 9 collections will be fetched. Batch fetching can significantly reduce
the number of queries required for hierarchies of objects (for example, when loading
the tree of parent and child Category objects).

 Let’s talk about a special case: many-to-many associations (we discuss this mapping
in more detail in chapter 7). You usually use a link table (some developers also call it
relationship table or association table) that holds only the key values of the two associated
tables and therefore allows a many-to-many multiplicity. This additional table must be
considered if you decide to use eager fetching. Look at the following straightforward
many-to-many example, which maps the association from Category to Item:

<set name="Items" outer-join="true" table="CATEGORY_ITEM">
 <key column="CATEGORY_ID"/>
 <many-to-many column="ITEM_ID" class="Item"/>
</set>

In this case, the eager fetching strategy refers only to the association table
CATEGORY_ITEM. If you load a Category with this fetching strategy, NHibernate auto-
matically fetches all link entries from CATEGORY_ITEM in a single outer join SQL query,
but not the item instances from ITEM!

 The entities contained in the many-to-many association can also be fetched eagerly
with the same SQL query. The <many-to-many> element lets you customize this behavior:

<set name="Items" outer-join="true" table="CATEGORY_ITEM">
 <key column="CATEGORY_ID"/>
 <many-to-many column="ITEM_ID" outer-join="true" class="Item"/>
</set>

NHibernate now fetches all Items in a Category with a single outer join query when
the Category is loaded. But keep in mind that we usually recommend lazy loading as
the default fetching strategy and that NHibernate is limited to one eagerly fetched col-
lection per mapped persistent class.
SETTING THE FETCH DEPTH

We now discuss a global fetching strategy setting: the maximum fetch depth. This setting
controls the number of outer-joined tables NHibernate uses in a single SQL query.
Consider the complete association chain from Category to Item, and from Item to
Bid. The first is a many-to-many association, and the second is one-to-many; hence
both associations are mapped with collection elements. If you declare outer-
join="true" for both associations (don’t forget the special <many-to-many> declara-
tion) and load a single Category, how many queries will NHibernate execute? Will
only the Items be eagerly fetched, or also all the Bids of each Item?

 You probably expect a single query with an outer join operation including the CAT-
EGORY, CATEGORY_ITEM, ITEM, and BID tables. But this isn’t the case by default.

 NHibernate’s outer join fetch behavior is controlled with the global configuration
option hibernate.max_fetch_depth. If you set this to 1 (also the default), NHiber-
nate fetches only the Category and the link entries from the CATEGORY_ITEM associ-
ation table. If you set it to 2, NHibernate executes an outer join that also includes the
Items in the same SQL query. Setting this option to 3 won’t, as you might have

131Retrieving objects
expected, also include the bids of each item in the same SQL query. The limitation to
one outer joined collection applies here, preventing slow Cartesian products.

 Recommended values for the fetch depth depend on the join performance and
the size of the database tables; test your applications with low values (less than 4) first,
and decrease or increase the number while tuning your application. The global maxi-
mum fetch depth also applies to single-ended association (<many-to-one>, <one-to-
one>) mapped with an eager fetching strategy or using the auto default.

 Keep in mind that eager fetching strategies declared in the mapping metadata are
effective only if you use retrieval by identifier, use the criteria query API, or navigate
through the object graph manually. Any HQL query may specify its own fetching strat-
egy at runtime, thus ignoring the mapping defaults. You can also override the defaults
(that is, not ignore them) with criteria queries. This is an important difference, and
we cover it in more detail in section 8.3.2.

 But you may sometimes want to initialize a proxy or a collection wrapper manually
with a simple API call.
INITIALIZING LAZY ASSOCIATIONS

A proxy or collection wrapper is automatically initialized when any of its methods are
invoked (except the identifier property getter, which may return the identifier value
without fetching the underlying persistent object). But it’s only possible to initialize a
proxy or collection wrapper if it’s currently associated with an open ISession. If you
close the session and try to access an uninitialized proxy or collection, NHibernate
throws a LazyInitializationException.

 Because of this behavior, it’s sometimes useful to explicitly initialize an object
before closing the session. This approach isn’t as flexible as retrieving the complete
required object subgraph with an HQL query, using arbitrary fetching strategies
at runtime.

 You use the static method NHibernateUtil.Initialize() for manual initialization:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 Category cat = session.Get<Category>(id);
 NHibernateUtil.Initialize(cat.Items);
 session.Transaction.Commit();
}
foreach(Item item in cat.Items)
//...

NHibernateUtil.Initialize() may be passed a collection wrapper, as in this exam-
ple, or a proxy. You may also, in similar rare cases, check the current state of a prop-
erty by calling NHibernateUtil.IsInitialized(). (Note that Initialize() doesn’t
cascade to any associated objects.)

 Another solution for this problem is to keep the session open until the application
thread finishes, so you can navigate the object graph whenever you like and have NHi-
bernate automatically initialize all lazy references. This is a problem of application
design and transaction demarcation; we discuss it again in section 9.1. But your first
choice should be to fetch the complete required graph, using HQL or criteria queries,

132 CHAPTER 4 Working with persistent objects
with a sensible and optimized default fetching strategy in the mapping metadata for
all other cases. NHibernate allows you to look at the underlying SQL that it sends to
the database, so it’s possible to tune object retrieval if performance problems are
observed. This is discussed in the next section.

4.4.7 Tuning object retrieval

In most cases, your NHibernate applications will perform well when it comes to fetch-
ing data from the database. But occasionally, you may notice that some areas of your
application aren’t performing as well as they should. There can be many reasons for
this; you need to understand how to analyze and tune your NHibernate applications so
they work efficiently with the database. Let’s look at the steps involved when you’re
tuning the object-retrieval operations in your application.

 Enable the NHibernate SQL log, as described in chapter 3. You should also be pre-
pared to read, understand, and evaluate SQL queries and their performance charac-
teristics for your specific relational model: will a single join operation be faster than
two selects? Are all the indexes used properly, and what is the cache-hit ratio inside
the database? Get your DBA to help you with the performance evaluation; only she will
have the knowledge to decide which SQL execution plan is the best.

 Step through your application use case by use case, and note how many and what
SQL statements NHibernate executes. A use case can be a single screen in your web
application or a sequence of user dialogs. This step also involves collecting the
object-retrieval methods you use in each use case: walking the graph, retrieval by
identifier, HQL, and criteria queries. Your goal is to bring down the number (and
complexity) of SQL queries for each use case by tuning the default fetching strategies
in metadata.

 You may encounter two common issues:

■ If the SQL statements use join operations that are too complex and slow, set
outer-join to false for <many-to-one> associations (this is enabled by
default). Also try to tune with the global hibernate.max_fetch_depth config-
uration option, but keep in mind that this is best left at a value between 1
and 4.

■ If too many SQL statements are executed, use lazy="true" for all collection
mappings; by default, NHibernate will execute an immediate additional fetch
for the collection elements (which, if they’re entities, can cascade further into
the graph). In rare cases, if you’re sure, enable outer-join="true" and disable
lazy loading for particular collections. Keep in mind that only one collection
property per persistent class may be fetched eagerly. Use batch fetching with
values between 3 and 15 to further optimize collection fetching if the given unit
of work involves several of the same collections or if you’re accessing a tree of
parent and child objects.

After you set a new fetching strategy, rerun the use case and check the generated SQL
again. Note the SQL statements, and go to the next use case.

133Summary
 After you optimize all use cases, check every use case again and see if any optimiza-
tions had side effects for others. With some experience, you’ll be able to avoid nega-
tive effects and get it right the first time.

 This optimization technique isn’t practical for more than the default fetching strat-
egies; you can also use it to tune HQL and criteria queries, which can ignore and over-
ride the default fetching for specific use cases and units of work. We discuss runtime
fetching in chapter 8.

 In this section, you’ve started to think about performance issues, especially issues
related to association fetching. The quickest way to fetch a graph of objects is to fetch
it from the cache in memory, as we show in the next chapter.

4.5 Summary
The dynamic aspects of the object/relational mismatch are just as important as the
better-known and better-understood structural mismatch problems. In this chapter,
we were primarily concerned with the lifecycle of objects with respect to the persis-
tence mechanism. We discussed the three object states defined by NHibernate: persis-
tent, detached, and transient. Objects transition between these states when you invoke
methods of the ISession interface, or when you create and remove references from a
graph of already persistent instances. This latter behavior is governed by the configu-
rable cascade styles available in NHibernate’s model for transitive persistence. This
model lets you declare the cascading of operations (such as saving or deletion) on a
per-association basis, which is more powerful and flexible than the traditional persis-

tence by reachability model. Your goal is to find the best cascading style for each associ-
ation and therefore minimize the number of persistence manager calls you have to
make when storing objects.

 Retrieving objects from the database is equally important: you can walk the graph
of domain objects by accessing properties and let NHibernate transparently fetch
objects. You can also load objects by identifier, write arbitrary queries in the HQL, or
create an object-oriented representation of your query using the query by criteria API.
In addition, you can use native SQL queries in special cases.

 Most of these object-retrieval methods use the default fetching strategies we
defined in mapping metadata (HQL ignores them; criteria queries can override
them). The correct fetching strategy minimizes the number of SQL statements that
have to be executed by lazily, eagerly, or batch-fetching objects. You optimize your
NHibernate application by analyzing the SQL executed in each use case and tuning
the default and runtime fetching strategies.

 Next, we explore the closely related topics of transactions and caching.

Transactions,
 concurrency, and caching
Now that you understand the basics of object/relational mapping with NHibernate,
let’s take a closer look at one of the core issues in database application design:
transaction management. In this chapter, we examine how you use NHibernate to
manage transactions, how concurrency is handled, and how caching is related to
both aspects. Let’s look at our example application.

 Some application functionality requires that several different things be done
together. For example, when an auction finishes, the CaveatEmptor application has
to perform four tasks:

1 Mark the winning (highest amount) bid.
2 Charge the seller the cost of the auction.
3 Charge the successful bidder the price of the winning bid.
4 Notify the seller and the successful bidder.

This chapter covers
■ Database transactions and locking
■ Long-running conversations
■ The NHibernate first- and second-level caches
■ The caching system in practice with CaveatEmptor
134

135Understanding database transactions
What happens if you can’t bill the auction costs because of a failure in the external credit
card system? Your business requirements may state that either all listed actions must suc-
ceed or none must succeed. If so, you call these steps collectively a transaction or a unit
of work. If only one step fails, the whole unit of work must fail. We say that the transaction
is atomic: several operations are grouped together as a single indivisible unit.

 Furthermore, transactions allow multiple users to work concurrently with the same
data without compromising the integrity and correctness of the data; a particular
transaction shouldn’t be visible to and shouldn’t influence other concurrently run-
ning transactions. Several different strategies are used to implement this behavior,
which is called isolation. We’ll explore them in this chapter.

 Transactions are also said to exhibit consistency and durability. Consistency means
that any transaction works with a consistent set of data and leaves the data in a consis-
tent state when the transaction completes. Durability guarantees that once a transac-
tion completes, all changes made during that transaction become persistent and
aren’t lost even if the system subsequently fails. Atomicity, consistency, isolation, and
durability are together known as the ACID criteria.

 We begin this chapter with a discussion of system-level database transactions, where
the database guarantees ACID behavior. We look at the ADO.NET and Enterprise Ser-
vices transactions APIs and see how NHibernate, working as a client of these APIs, is
used to control database transactions.

 In an online application, database transactions must have extremely short lifespans.
A database transaction should span a single batch of database operations, interleaved
with business logic. It should certainly not span interaction with the user. We’ll augment
your understanding of transactions with the notion of a long-running user transaction
called a conversation, where database operations occur in several batches, alternating
with user interaction. There are several ways to implement conversations in NHibernate
applications, all of which are discussed in this chapter.

 Finally, the subject of caching is much more closely related to transactions than it
may appear at first sight. For example, caching lets you keep data close to where it’s
needed, but at the risk of getting stale over time. Therefore, caching strategies need to
be balanced to also allow for consistent and durable transactions. In the second half
of this chapter, armed with an understanding of transactions, we explore NHibernate’s
sophisticated cache architecture. You’ll learn which data is a good candidate for cach-
ing and how to handle concurrency of the cache. You’ll then enable caching in the
CaveatEmptor application.

 Let’s begin with the basics and see how transactions work at the lowest level: the
database.

5.1 Understanding database transactions
Databases implement the notion of a unit of work as a database transaction (some-
times called a system transaction). A database transaction groups data access operations.
A transaction is guaranteed to end in one of two ways: it’s either committed or rolled
back. Hence, database transactions are always truly atomic. In figure 5.1, you can see
this graphically.

136 CHAPTER 5 Transactions, concurrency, and caching
 If several database operations
should be executed inside a transac-
tion, you must mark the boundaries
of the unit of work. You must start the
transaction and, at some point, com-
mit the changes. If an error occurs
(either while executing operations or
when committing the changes), you
have to roll back the transaction to
leave the data in a consistent state.
This is known as transaction demarca-
tion, and (depending on the API you use) it involves more or less manual intervention.

 You may already have experience with two transaction-handling programming
interfaces: the ADO.NET API and the COM+ automatic transaction processing service.

5.1.1 ADO.NET and Enterprise Services/COM+ transactions

Without Enterprise Services, the ADO.NET API is used to mark transaction boundaries.
You begin a transaction by calling BeginTransaction() on an ADO.NET connection
and end it by calling Commit(). You may, at any time, force an immediate rollback by
calling Rollback(). Easy, huh?

 In a system that stores data in multiple databases, a particular unit of work may
involve access to more than one data store. In this case, you can’t achieve atomicity
using ADO.NET alone. You require a transaction manager with support for distributed
transactions (two-phase commit). You communicate with the transaction manager
using the COM+ automatic transaction-processing service.

 With Enterprise Services, the automatic transaction-processing service is used not
only for distributed transactions, but also for declarative transaction-processing fea-
tures. Declarative transaction processing allows you to avoid explicit transaction
demarcation calls in your application source code; rather, transaction demarcation is
controlled by transaction attributes. The declarative transaction attribute specifies
how an object participates in a transaction and is configured programmatically.

 We aren’t interested in the details of direct ADO.NET or Enterprise Services trans-
action demarcation. You’ll be using these APIs mostly indirectly. Section 10.3 explains
how to make NHibernate and Enterprise Services transactions work together.

 NHibernate communicates with the database via an ADO.NET IDbConnection, and
it provides its own abstraction layer, hiding the underlying transaction API. Using
Enterprise Services doesn’t require any change in the configuration of NHibernate.

 Transaction management is exposed to the application developer via the NHiber-
nate ITransaction interface. You aren’t forced to use this API—NHibernate lets you
control ADO.NET transactions directly. We don’t discuss this option, because its use is
discouraged; instead, we focus on the ITransaction API and its usage.

Begin

Transaction

Commit

Rollback

Transaction Succeeded

Transaction Failed

Initial State

Figure 5.1 System states
during a transaction

137Understanding database transactions
5.1.2 The NHibernate ITransaction API

The ITransaction interface provides methods for declaring the boundaries of a data-
base transaction. Listing 5.1 shows an example of the basic usage of ITransaction.

using(ISession session = sessions.OpenSession())
using(session.BeginTransaction()) {
 ConcludeAuction();
 session.Transaction.Commit();
}

The call to session.BeginTransaction() marks the beginning of a database transac-
tion. This starts an ADO.NET transaction on the ADO.NET connection. With COM+,
you don’t need to create this transaction; the connection is automatically enlisted in
the current distributed transaction, or you have to do it manually if you’ve disabled
automatic transaction enlistment.

 The call to Transaction.Commit() synchronizes the ISession state with the data-
base. NHibernate then commits the underlying transaction if and only if Begin-
Transaction() started a new transaction (with COM+, you have to vote in favor of
completing the distributed transaction).

 If ConcludeAuction() threw an exception, the using() statement disposes the
transaction (here, it means doing a rollback).

It’s critically important to make sure the session is closed at the end in order to ensure
that the ADO.NET connection is released and returned to the connection pool. (This
step is the application’s responsibility.)

NOTE After committing a transaction, the NHibernate session replaces it with a
new transaction. This means you should keep a reference to the
transaction you’re committing if you think you’ll need it afterward. This
is necessary if you need to call transaction.WasCommitted.session.
Transaction.WasCommitted always returns false.

Here is another version showing in detail where exceptions can be thrown and how to
deal with them (this version is more complex than the one presented in chapter 2):

ISession session = sessions.OpenSession();
ITransaction tx = null;

Listing 5.1 Using the NHibernate ITransaction API

Do I need a transaction for read-only operations?
Due to the new connection release mode of NHibernate 1.2, a database connection
is opened and closed for each transaction. As long as you’re executing a single query,
you can let NHibernate manage the transaction.

138 CHAPTER 5 Transactions, concurrency, and caching
try {
 tx = session.BeginTransaction();
 ConcludeAuction();
 tx.Commit();
} catch (Exception e) {
 if (tx != null) {
 try {
 tx.Rollback();
 } catch (HibernateException he) {
 //log here
 }
 }
 throw;
} finally {
 try {
 session.Close();
 } catch (HibernateException he) {
 throw;
 }
}

As you can see, even rolling back an ITransaction and closing the ISession can throw
an exception. You shouldn’t use this example as a template in your own application,
because you should hide the exception handling with generic infrastructure code. You
can, for example, wrap the thrown exception in your own InfrastructureException.
We discuss this question of application design in more detail in section 8.1.

NOTE You must be aware of one important aspect: the ISession has to be
immediately closed and discarded (not reused) when an exception
occurs. NHibernate can’t retry failed transactions. This is no problem in
practice, because database exceptions are usually fatal (constraint viola-
tions, for example), and there is no well-defined state to continue after a
failed transaction. An application in production shouldn’t throw any
database exceptions, either.

We’ve noted that the call to Commit() synchronizes the ISession state with the data-
base. This is called flushing, a process you automatically trigger when you use the NHi-
bernate ITransaction API.

5.1.3 Flushing the session

The NHibernate ISession implements transparent write-behind. This means changes
to the domain model made in the scope of an ISession aren’t immediately propa-
gated to the database. Instead, NHibernate can coalesce many changes into a minimal
number of database requests, helping minimize the impact of network latency.

 For example, if a single property of an object is changed twice in the same ITrans-
action, NHibernate needs to execute only one SQL UPDATE.

 NHibernate flushes occur only at the following times:

■ When an ITransaction is committed
■ Sometimes before a query is executed

139Understanding database transactions
■ When the application calls
■ ISession.Flush() explicitly

Flushing the ISession state to the database at the end of a database transaction is
required in order to make the changes durable and is the common case. NHibernate
doesn’t flush before every query. But if changes are held in memory that would affect
the results of the query, NHibernate will, by default, synchronize first.

 You can control this behavior by explicitly setting the NHibernate FlushMode to the
property session.FlushMode. The flush modes are as follow:

■ FlushMode.Auto—The default. Enables the behavior just described.
■ FlushMode.Commit—Specifies that the session won’t be flushed before query

execution (it will be flushed only at the end of the database transaction). Be
aware that this setting may expose you to stale data: modifications you made to
objects only in memory may conflict with the results of the query.

■ FlushMode.Never—Lets you specify that only explicit calls to Flush() result in
synchronization of session state with the database.

We don’t recommend that you change this setting from the default. It’s provided to
allow performance optimization in rare cases. Likewise, most applications rarely need
to call Flush() explicitly. This functionality is useful when you’re working with trig-
gers, mixing NHibernate with direct ADO.NET, or working with buggy ADO.NET driv-
ers. You should be aware of the option but not necessarily look out for use cases.

 We’ve discussed how NHibernate handles both transactions and the flushing of
changes to the database. Another important responsibility of NHibernate is managing
actual connections to the database. We discuss this next.

5.1.4 Understanding connection-release modes

As a valuable resource, the database connection should be held open for the shortest
amount of time possible. NHibernate is smart enough to open it only when really nec-
essary (opening the session doesn’t automatically open the connection). Since NHi-
bernate 1.2, it’s also possible to define when the database connection should be closed.

 Currently, two options are available. They’re defined by the enumeration NHiber-
nate.ConnectionReleaseMode:

■ OnClose—This was the only mode available in NHibernate 1.0. In this case, the
session releases the connection when it’s closed.

■ AfterTransaction—This is the default mode in NHibernate 1.2. The connec-
tion is released as soon as the transaction completes.

Note that you can use the Disconnect() method of the ISession interface to force
the release of the connection (without closing the session) and the Reconnect()
method to tell the session to obtain a new connection when needed.

 Obviously, these modes are activated only for connections opened by NHibernate.
If you open a connection and send it to NHibernate, you’re also responsible for clos-
ing this connection.

140 CHAPTER 5 Transactions, concurrency, and caching
 To specify a mode, you must use the configuration parameter hibernate.
connection.release_mode. Its default (and recommended) value is auto. It selects
the best mode, which is currently AfterTransaction. The two other values are
on_close and after_transaction.

 Because NHibernate 1.2.0 has some problems dealing with APIs like System.
Transactions, you must use OnClose mode if you discover that the session opens mul-
tiple connections in a single transaction.

 Now that you understand the basic usage of database transactions with the NHiber-
nate ITransaction interface, let’s turn our attention more closely to the subject of
concurrent data access.

 It seems as though you shouldn’t have to care about transaction isolation—the
term implies that something either is or isn’t isolated. This is misleading. Complete iso-
lation of concurrent transactions is extremely expensive in terms of application scal-
ability, so databases provide several degrees of isolation. For most applications,
incomplete transaction isolation is acceptable. It’s important to understand the
degree of isolation you should choose for an application that uses NHibernate and
how NHibernate integrates with the transaction capabilities of the database.

5.1.5 Understanding isolation levels

Databases (and other transactional systems) attempt to ensure transaction isolation,
meaning that, from the point of view of each concurrent transaction, it appears no
other transactions are in progress. Traditionally, this has been implemented using lock-
ing. A transaction may place a lock on a particular item of data, temporarily prevent-
ing access to that item by other transactions. Some modern databases such as Oracle
and PostgreSQL implement transaction isolation using multiversion concurrency control,
which is generally considered more scalable. We discuss isolation assuming a locking
model (most of our observations are also applicable to multiversion concurrency).

 This discussion is about database transactions and the isolation level provided by the
database. NHibernate doesn’t add additional semantics; it uses whatever is available
with a given database. If you consider the many years of experience that database ven-
dors have had with implementing concurrency control, you’ll clearly see the advantage
of this approach. Your part, as a NHibernate application developer, is to understand the
capabilities of your database and how to change the database isolation behavior if
required by your particular scenario (and by your data-integrity requirements).
ISOLATION ISSUES

First, let’s look at several phenomena that break full transaction isolation. The ANSI
SQL standard defines the standard transaction isolation levels in terms of which of
these phenomena are permissible:

■ Lost update —Two transactions both update a row, and then the second transac-
tion aborts, causing both changes to be lost. This occurs in systems that don’t
implement any locking. The concurrent transactions aren’t isolated.

■ Dirty read —One transaction reads changes made by another transaction that
hasn’t yet been committed. This is dangerous, because those changes may later
be rolled back.

141Understanding database transactions
■ Unrepeatable read —A transaction reads a row twice and reads different state each
time. For example, another transaction may have written to the row, and com-
mitted, between the two reads.

■ Second lost updates problem —This is a special case of an unrepeatable read. Imag-
ine that two concurrent transactions both read a row, one writes to it and com-
mits, and then the second writes to it and commits. The changes made by the
first writer are lost. This problem is also known as last write wins.

■ Phantom read —A transaction executes a query twice, and the second result set
includes rows that weren’t visible in the first result set. (It need not be exactly the
same query.) This situation is caused by another transaction inserting new rows
between the execution of the two queries.

Now that you understand all the bad things that could occur, we define the various
transaction isolation levels and see what problems they prevent.
ISOLATION LEVELS

The standard isolation levels are defined by the ANSI SQL standard. You’ll use these
levels to declare your desired transaction isolation later:

■ Read uncommitted —Permits dirty reads but not lost updates. One transaction
may not write to a row if another uncommitted transaction has already written
to it. But any transaction may read any row. This isolation level may be imple-
mented using exclusive write locks.

■ Read committed —Permits unrepeatable reads but not dirty reads. This may be
achieved using momentary shared read locks and exclusive write locks. Reading
transactions don’t block other transactions from accessing a row. But an uncom-
mitted writing transaction blocks all other transactions from accessing the row.

■ Repeatable read —Permits neither unrepeatable reads nor dirty reads. Phantom
reads may occur. This may be achieved using shared read locks and exclusive
write locks. Reading transactions block writing transactions (but not other read-
ing transactions), and writing transactions block all other transactions.

■ Serializable —Provides the strictest transaction isolation. It emulates serial trans-
action execution, as if transactions had been executed one after another, seri-
ally, rather than concurrently. Serializability may not be implemented using
only row-level locks; another mechanism must prevent a newly inserted row
from becoming visible to a transaction that has already executed a query that
would return the row.

It’s nice to know how all these technical terms are defined, but how does that help you
choose an isolation level for your application?

5.1.6 Choosing an isolation level

Developers (ourselves included) are often unsure about what transaction isolation
level to use in a production application. Too great a degree of isolation will harm per-
formance of a highly concurrent application. Insufficient isolation may cause subtle
bugs in your application that can’t be reproduced and that you’ll never find out about
until the system is working under heavy load in the deployed environment.

142 CHAPTER 5 Transactions, concurrency, and caching
 Note that we refer to caching and optimistic locking (using versioning) in the follow-
ing explanation, two concepts explained later in this chapter. You may want to skip
this section and come back when it’s time to make the decision about an isolation
level in your application. Picking the right isolation level is, after all, highly dependent
on your particular scenario. The following discussion contains recommendations;
nothing is carved in stone.

 NHibernate tries hard to be as transparent as possible regarding the transactional
semantics of the database. Nevertheless, caching and optimistic locking affect these
semantics. What is a sensible database-isolation level to choose in an NHiber-
nate application?

 First, eliminate the read uncommitted isolation level. It’s extremely dangerous to use
one transaction’s uncommitted changes in a different transaction. The rollback or
failure of one transaction would affect other concurrent transactions. Rollback of the
first transaction could bring other transactions down with it or perhaps even cause
them to leave the database in an inconsistent state. It’s possible that changes made by
a transaction that ends up being rolled back could be committed anyway, because they
could be read and then propagated by another transaction that is successful!

 Second, most applications don’t need serializable isolation (phantom reads aren’t
usually a problem), and this isolation level tends to scale poorly. Few existing applica-
tions use serializable isolation in production; rather, they use pessimistic locks
(see section 6.1.8), which effectively force a serialized execution of operations in cer-
tain situations.

 This leaves you a choice between read committed and repeatable read. Let’s first con-
sider repeatable read. This isolation level eliminates the possibility that one transac-
tion could overwrite changes made by another concurrent transaction (the second
lost updates problem) if all data access is performed in a single atomic database trans-
action. This is an important issue, but using repeatable read isn’t the only way to
resolve it.

 Let’s assume you’re using versioned data, something that NHibernate can do for
you automatically. The combination of the (mandatory) NHibernate first-level session
cache and versioning already gives you most of the features of repeatable-read isola-
tion. In particular, versioning prevents the second lost update problem, and the first-
level session cache ensures that the state of the persistent instances loaded by one
transaction is isolated from changes made by other transactions. Thus read-commit-
ted isolation for all database transactions is acceptable if you use versioned data.

 Repeatable read provides a bit more reproducibility for query result sets (only for
the duration of the database transaction); but because phantom reads are still possi-
ble, there isn’t much value in that. (It’s also not common for web applications to
query the same table twice in a single database transaction.)

 You also have to consider the (optional) second-level NHibernate cache. It can
provide the same transaction isolation as the underlying database transaction, but it
may even weaken isolation. If you’re heavily using a cache-concurrency strategy for
the second-level cache that doesn’t preserve repeatable-read semantics (for example,

143Understanding database transactions
the read-write and especially the nonstrict-read-write strategies, both discussed later
in this chapter), the choice for a default isolation level is easy: you can’t achieve
repeatable read anyway, so there’s no point slowing down the database. On the other
hand, you may not be using second-level caching for critical classes, or you may be
using a fully transactional cache that provides repeatable-read isolation. Should you
use repeatable read in this case? You can if you like, but it’s probably not worth the
performance cost.

 Setting the transaction isolation level allows you to choose a good default locking
strategy for all your database transactions. How do you set the isolation level?

5.1.7 Setting an isolation level

Every ADO.NET connection to a database uses the database’s default isolation
level—usually read committed or repeatable read. This default can be changed in the
database configuration. You may also set the transaction isolation for ADO.NET con-
nections using an NHibernate configuration option:

<add
 key="hibernate.connection.isolation"
 value="ReadCommitted"
/>

NHibernate will then set this isolation level on every ADO.NET connection obtained
from a connection pool before starting a transaction. Some of the sensible values for
this option are as follow (you can also find them in System.Data.IsolationLevel):

■ ReadUncommitted—Read-uncommitted isolation
■ ReadCommitted—Read-committed isolation
■ RepeatableRead—Repeatable-read isolation
■ Serializable—Serializable isolation

Note that NHibernate never changes the isolation level of connections obtained from
a datasource provided by COM+. You may change the default isolation using the
Isolation property of System.EnterpriseServices.TransactionAttribute.

 So far, we’ve introduced the issues that surround transaction isolation, the isola-
tion levels available, and how to select the correct one for your application. As you can
see, setting the isolation level is a global option that affects all connections and trans-
actions. From time to time, it’s useful to specify a more restrictive lock for a particular
transaction. NHibernate allows you to explicitly specify the use of a pessimistic lock.

5.1.8 Using pessimistic locking

Locking is a mechanism that prevents concurrent access to a particular item of data.
When one transaction holds a lock on an item, no concurrent transaction can read
and/or modify this item. A lock may be just a momentary lock, held while the item
is being read, or it may be held until the completion of the transaction. A pessimistic
lock is a lock that is acquired when an item of data is read and that is held until transac-
tion completion.

144 CHAPTER 5 Transactions, concurrency, and caching
 In read-committed mode (our preferred transaction isolation level), the database
never acquires pessimistic locks unless explicitly requested by the application. Usually,
pessimistic locks aren’t the most scalable approach to concurrency. But in certain spe-
cial circumstances, they may be used to prevent database-level deadlocks, which result
in transaction failure. Some databases (Oracle, MySQL and PostgreSQL, for example,
but not SQL Server) provide the SQL SELECT...FOR UPDATE syntax to allow the use of
explicit pessimistic locks. You can check the NHibernate Dialects to find out if your
database supports this feature. If your database isn’t supported, NHibernate will always
execute a normal SELECT without the FOR UPDATE clause.

 The NHibernate LockMode class lets you request a pessimistic lock on a particular
item. In addition, you can use the LockMode to force NHibernate to bypass the cache
layer or to execute a simple version check. You’ll see the benefit of these operations
when we discuss versioning and caching.

 Let’s see how to use LockMode. Suppose you have a transaction that looks like this:

ITransaction tx = session.BeginTransaction();
Category cat = session.Get<Category>(catId);
cat.Name = "New Name";
tx.Commit();

It’s possible to make this transaction use a pessimistic lock as follows:

ITransaction tx = session.BeginTransaction();
Category cat = session.Get<Category>(catId, LockMode.Upgrade);
cat.Name = "New Name";
tx.Commit();

With LockMode.Upgrade, NHibernate loads the Category using a SELECT...FOR
UPDATE, thus locking the retrieved rows in the database until they’re released when
the transaction ends.

 NHibernate defines several lock modes:

■ LockMode.None—Don’t go to the database unless the object isn’t in either
cache.

■ LockMode.Read—Bypass both levels of the cache, and perform a version check
to verify that the object in memory is the same version that currently exists in
the database.

■ LockMode.Upgrade—Bypass both levels of the cache, do a version check
(if applicable), and obtain a database-level pessimistic upgrade lock, if that is
supported.

■ LockMode.UpgradeNoWait—The same as UPGRADE, but use a SELECT...FOR
UPDATE NOWAIT, if that is supported. This disables waiting for concurrent lock
releases, thus throwing a locking exception immediately if the lock can’t
be obtained.

■ LockMode.Write—The lock is obtained automatically when NHibernate writes
to a row in the current transaction (this is an internal mode; you can’t specify it
explicitly).

145Understanding database transactions
By default, Load() and Get() use LockMode.None. LockMode.Read is most useful with
ISession.Lock() and a detached object. Here’s an example:

Item item = ItemDAO.Load(1);
Bid bid = new Bid();
item.AddBid(bid);
//...
ITransaction tx = session.BeginTransaction();
session.Lock(item, LockMode.Read);
tx.Commit();

This code performs a version check on the detached Item instance to verify that the
database row wasn’t updated by another transaction since it was retrieved. If it was
updated, a StaleObjectStateException is thrown.

 Behind the scenes, NHibernate executes a SELECT to make sure there is a database
row with the identifier (and version, if present) of the detached object. It doesn’t
check all the columns. This isn’t a problem when the version is present because it’s
always updated when persisting the object using NHibernate. If, for some reason, you
bypass NHibernate and use ADO.NET, don’t forget to update the version.

 By specifying an explicit LockMode other than LockMode.None, you force NHiber-
nate to bypass both levels of the cache and go all the way to the database. We think
that most of the time caching is more useful than pessimistic locking, so we don’t use
an explicit LockMode unless we really need it. Our advice is that if you have a profes-
sional DBA on your project, you should let the DBA decide which transactions require
pessimistic locking once the application is up and running. This decision should
depend on subtle details of the interactions between different transactions and can’t
be guessed up front.

 Let’s consider another aspect of concurrent data access. We think that most .NET
developers are familiar with the notion of a database transaction, and that is what they
usually mean by transaction. In this book, we consider this to be a fine-grained transac-
tion, but we also consider a more coarse-grained notion. Coarse-grained transactions
will correspond to what the user of the application considers a single unit of work. Why
should this be any different than the fine-grained database transaction?

 The database isolates the effects of concurrent database transactions. It should
appear to the application that each transaction is the only transaction currently
accessing the database (even when it isn’t). Isolation is expensive. The database must
allocate significant resources to each transaction for the duration of the transaction.
In particular, as we’ve discussed, many databases lock rows that have been read or
updated by a transaction, preventing access by any other transaction, until the first
transaction completes. In highly concurrent systems with hundreds or thousands of
updates per second, these locks can prevent scalability if they’re held for longer than
absolutely necessary. For this reason, you shouldn’t hold the database transaction (or
even the ADO.NET connection) open while waiting for user input. If a user takes a few
minutes to enter data into a form while the database is locking resources, then other
transactions may be blocked for that entire duration! All this, of course, also applies to

146 CHAPTER 5 Transactions, concurrency, and caching
an NHibernate ITransaction, because it’s an adaptor to the underlying database
transaction mechanism.

 If you want to handle long user “think time” while still taking advantage of the
ACID attributes of transactions, simple database transactions aren’t sufficient. You
need a new concept: long-running user transactions also known as conversations.

5.2 Working with conversations
Business processes, which may be considered a single unit of work from the point of view
of the user, necessarily span multiple user-client requests. This is especially true when a
user makes a decision to update data on the basis of the current state of that data.

 In an extreme example, suppose you collect data entered by the user on multiple
screens, perhaps using wizard-style step-by-step navigation. You must read and write
related items of data in several requests (hence several database transactions) until
the user clicks Finish on the last screen. Throughout this process, the data must
remain consistent and the user must be informed of any change to the data made by
any concurrent transaction. We call this coarse-grained transaction concept a conversa-
tion: a broader notion of the unit of work.

 We now restate this definition more precisely. Most .NET applications include sev-
eral examples of the following type of functionality:

1 Data is retrieved and displayed on the screen, requiring the first database trans-
action as data is read.

2 The user has an opportunity to view and then modify the data in his own time.
(Of course, no database transaction need here.)

3 The modifications are made persistent, which requires a second database trans-
action as data is written.

In more complicated applications, there may be several such interactions with the user
before a particular business process is complete. This leads to the notion of a conver-
sation (sometimes called a long transaction, user transaction, application transaction, or
business transaction). We prefer the terms conversation and user transaction because
they’re less vague and emphasize the transaction aspect from the user’s point of view.

 During these long user-based transactions, you can’t rely on the database to
enforce isolation or atomicity of concurrent conversations. Isolation becomes some-
thing your application needs to deal with explicitly—and may even require getting the
user’s input.

5.2.1 An example scenario

Let’s look at an example that uses a conversation. In the CaveatEmptor application,
both the user who posted a comment and any system administrator can open an Edit
Comment screen to delete or edit the text of a comment. Suppose two different
administrators open the edit screen to view the same comment at the same time. Both
edit the comment text and submit their changes. How can you handle this? There are
three strategies:

147Working with conversations
■ Last commit wins —Both updates are saved to the database, but the last one over-
writes the first. No error message is shown to anyone, and the first update is
silently lost forever.

■ First commit wins —The first update is saved. When the second user attempts to
save her changes, she receives an error message saying “your updates were lost
because someone else updated the record while you were editing it.” The user
must start her edits again and hope she has more luck next time she clicks Save!
This option is often called optimistic locking—the application optimistically
assumes there won’t be problems, but it checks and reports if there are.

■ Merge conflicting updates —The first modification is persisted. When the second
user saves, he’s given the option of merging the records. This is also falls under
the category of optimistic locking.

The first option, last commit wins, is problematic; the second user overwrites the
changes of the first user without seeing the changes made by the first user or even
knowing that they existed. In the example, this probably wouldn’t matter, but it would
be unacceptable in many scenarios. The second and third options are acceptable for
most scenarios. In practice, there is no single best solution; you must investigate your
own business requirements and select one of these three options.

 When you’re using NHibernate, the first option happens by default and requires
no work on your part. You should assess which parts of your application, if any, can get
away with this easy—but potentially dangerous—approach.

 If you decide you need the optimistic-locking options, then you must add appro-
priate code to your application. NHibernate can help you implement this using man-
aged versioning for optimistic locking, also known as optimistic offline lock.

5.2.2 Using managed versioning

Managed versioning relies on either a version number that is incremented or a time-
stamp that is updated to the current time, every time an object is modified. Note that
it has no relation to SQL Server’ TIMESTAMP column and that database-driven concur-
rency features aren’t supported.

 For NHibernate managed versioning, you must add a new property to your
Comment class and map it as a version number using the <version> tag. First, let’s look
at the changes to the Comment class with the mapping attributes:

[Class(Table="COMMENTS")]
public class Comment {
 //...
 private int version;
 //...
 [Version(Column="VERSION")]
 public int Version {
 get { return version; }
 set { version = value; }
 }
}

148 CHAPTER 5 Transactions, concurrency, and caching
You can also use a public scope for the setter and getter methods. When using XML,
the <version> property mapping must come immediately after the identifier property
mapping in the mapping file for the Comment class:

<class name="Comment" table="COMMENTS">
 <id ... >
 </id>
 <version name="Version" column="VERSION" />
 ...
</class>

The version number is just a counter value—it doesn’t have any useful semantic value.
Some people prefer to use a timestamp instead:

[Class(Table="COMMENTS")]
public class Comment {
 //...
 private DateTime lastUpdatedDatetime;
 //...
 [Timestamp(Column="LAST_UPDATED")]
 public DateTime LastUpdatedDatetime {
 get { return lastUpdatedDatetime; }
 set { lastUpdatedDatetime = value; }
 }
}

In theory, a timestamp is slightly less safe, because two concurrent transactions may
both load and update the same item all in the same millisecond; in practice, this is
unlikely to occur. But we recommend that new projects use a numeric version and not
a timestamp.

 You don’t need to set the value of the version or timestamp property yourself; NHi-
bernate will initialize the value when you first save a Comment, and increment or reset
it whenever the object is modified.

NOTE Is the version of the parent updated if a child is modified? For example,
if a single bid in the collection bids of an Item is modified, is the version
number of the Item also increased by one or not? The answer to that and
similar questions is simple: NHibernate increments the version number
whenever an object is dirty. This includes all dirty properties, whether
they’re single-valued or collections. Think about the relationship
between Item and Bid: if a Bid is modified, the version of the related
Item isn’t incremented. If you add or remove a Bid from the collection of
bids, the version of the Item will be updated. (Of course, you would make
Bid an immutable class, because it doesn’t make sense to modify bids.)

Whenever NHibernate updates a comment, it uses the version column in the SQL
WHERE clause:

update COMMENTS set COMMENT_TEXT='New comment text', VERSION=3
where COMMENT_ID=123 and VERSION=2

If another transaction had updated the same item since it was read by the current
transaction, the VERSION column wouldn’t contain the value 2, and the row wouldn’t

149Working with conversations
be updated. NHibernate would check the row count returned by the ADO.NET
driver—which in this case would be the number of rows updated, zero—and throw a
StaleObjectStateException.

 Using this exception, you can show the user of the second transaction an error
message (“You have been working with stale data because another user modified it!”)
and let the first commit win. Alternatively, you can catch the exception, close the cur-
rent session, and show the second user a new screen, allowing the user to manually
merge changes between the two versions (using a new session).

 It’s possible to disable the increment of the version when a specific property is
dirty. To do so, you must add optimistic-lock="false" to this property’s mapping.
This feature is available for properties, components, and collections (the owning
entity’s version isn’t incremented).

 It’s also possible to implement optimistic locking without a version by writing

<class ... optimistic-lock="all">

In this case, NHibernate compares the states of all fields to find if any of them as
changed. This feature works only for persistent objects; it can’t work for detached
objects because NHibernate doesn’t have their state when they were loaded.

 You may also write <class ... optimistic-lock="dirty"> if you want NHiber-
nate to allow concurrent modifications as long as they aren’t done on the same col-
umns. This allows, for example, an administrator to change the name of a customer
while another administrator changes her phone number at the same time.

 It’s possible to avoid the execution of unnecessary updates (that will trigger on
update events even when no changes have been made to detached instances) by map-
ping your entities using <class ... select-before-update="true">. NHibernate
will select these entities and issue update commands only for dirty instances. But be
aware of the performance implications of this feature.

 As you can see, NHibernate makes it easy to use managed versioning to implement
optimistic locking. Can you use optimistic locking and pessimistic locking together, or
do you have to choose one? And why is it called optimistic?

5.2.3 Optimistic and pessimistic locking compared

An optimistic approach always assumes that everything will be OK and that conflicting
data modifications are rare. Instead of being pessimistic and blocking concurrent data
access immediately (and forcing execution to be serialized), optimistic concurrency
control only blocks at the end of a unit of work and raises an error.

 Both strategies have their places and uses, of course. Multi-user applications usu-
ally default to optimistic concurrency control and use pessimistic locks when appro-
priate. Note that the duration of a pessimistic lock in NHibernate is a single database
transaction! This means you can’t use an exclusive lock to block concurrent access
longer than a single database transaction. We consider this a good thing, because the
only solution would be an extremely expensive lock held in memory (or a so-called
lock table in the database) for the duration of, for example, a conversation. This is
almost always a performance bottleneck; every data access involves additional lock

150 CHAPTER 5 Transactions, concurrency, and caching
checks to a synchronized lock manager. You may, if absolutely required in your partic-
ular application, implement a simple long pessimistic lock, using NHibernate to man-
age the lock table. Patterns for this can be found on the NHibernate website; but we
definitely don’t recommend this approach. You have to carefully examine the perfor-
mance implications of this exceptional case.

 Let’s get back to conversations. You now know the basics of managed versioning
and optimistic locking. In previous chapters (and earlier in this chapter), we talked
about the NHibernate ISession not being the same as a transaction. An ISession has
flexible scope, and you can use it in different ways with database and conversations.
This means the granularity of an ISession is flexible; it can be any unit of work you
want it to be.

5.2.4 Granularity of a session

To understand how you can use the NHibernate ISession, let’s consider its relation-
ship with transactions. Previously, we’ve discussed two related concepts:

■ The scope of object identity (see section 4.1.4)
■ The granularity of database and conversations

The NHibernate ISession instance defines the scope of object identity. The NHiber-
nate ITransaction instance matches the scope of a database transaction.

 What is the relationship between an ISession and a conversation? Let’s start this dis-
cussion with the most common usage of the ISession. Usually, you open a new ISes-
sion for each client request (for example, a web browser request) and begin a new
ITransaction. After executing the business logic, you commit the database transaction
and close the ISession, before sending the response to the client (see figure 5.2).

 The session (S1) and the database transaction (T1)
have the same granularity. If you’re not working with
the concept of conversation, this simple approach is all
you need in your application. We also like to call this
approach session-per-request.

 If you need a long-running conversation, you may,
thanks to detached objects (and NHibernate’s support
for optimistic locking, as discussed in the previous sec-
tion), implement it using the
same approach (see figure 5.3).

 Suppose your conversation
spans two client request/
response cycles—for example,
two HTTP requests in a web appli-
cation. You can load the interest-
ing objects in a first ISession
and later reattach them to a
new ISession after they’ve been

S1

T1

Request Response

Figure 5.2 Using a one-to-one
ISession and ITransaction
per request/response cycle

S1

T1

Request

S2

T2

Response

Conversation

Response Request

Detached Instances

Figure 5.3 Implementing conversations with multiple
ISessions, one for each request/response cycle

151Working with conversations
modified by the user. NHibernate will automatically perform a version check. The time
between (S1, T1) and (S2, T2) can be “long”: as long as your user needs to make his
changes. This approach is also known as session-per-request-with-detached-objects.

 Alternatively, you may prefer to use a single ISession that spans multiple requests
to implement your conversation. In this case, you don’t need to worry about reattach-
ing detached objects, because the objects remain persistent in the context of the one
long-running ISession (see figure 5.4). Of course, NHibernate is still responsible for
performing optimistic locking.

 A conversation keeps a reference to the session, although the session can be serial-
ized, if required. The underlying ADO.NET connection must be closed, of course, and
a new connection must be obtained on a subsequent request. This approach is known
as session-per-conversation or long session.

 Usually, your first choice should be to keep the NHibernate ISession open no lon-
ger than a single database transaction (session-per-request). Once the initial database
transaction is complete, the longer the session remains open, the greater the chance
that it holds stale data in its cache of persistent objects (the session is the mandatory
first-level cache). Certainly, you should never reuse a single session for longer than it
takes to complete a single conversation.

 The question of conversations
and the scope of the ISession is a
matter of application design. We
discuss implementation strategies
with examples in section 10.2.

 Finally, there is an important
issue you may be concerned
about. If you work with a legacy
database schema, you probably
can’t add version or timestamp
columns for NHibernate’s opti-
mistic locking.

5.2.5 Other ways to implement optimistic locking

If you don’t have version or timestamp columns, NHibernate can still perform opti-
mistic locking, but only for objects that are retrieved and modified in the same ISes-
sion. If you need optimistic locking for detached objects, you must use a version
number or timestamp.

 This alternative implementation of optimistic locking checks the current database
state against the unmodified values of persistent properties at the time the object was
retrieved (or the last time the session was flushed). You can enable this functionality
by setting the optimistic-lock attribute on the class mapping:

<class name="Comment" table="COMMENT" optimistic-lock="all">
 <id/>
 ...
</class>

S1

T1 T2

Request Response Request Response

Conversation

Disconnected from ADO.NET Connection

Figure 5.4 Implementing conversations with a long
ISession using disconnection

152 CHAPTER 5 Transactions, concurrency, and caching
Now, NHibernate includes all properties in the WHERE clause:

update COMMENTS set COMMENT_TEXT='New text'
where COMMENT_ID=123
and COMMENT_TEXT='Old Text'
and RATING=5
and ITEM_ID=3
and FROM_USER_ID=45

Alternatively, NHibernate will include only the modified properties (only
COMMENT_TEXT, in this example) if you set optimistic-lock="dirty". (Note that this
setting also requires you to set the class mapping to dynamic-update="true".)

 We don’t recommend this approach; it’s slower, more complex, and less reliable
than version numbers and doesn’t work if your conversation spans multiple sessions
(which is the case if you’re using detached objects).

 Note that when you use optimistic-lock="dirty", two concurrent conversations
can update the same row as long as they change different columns; the result can be
disastrous for the end user. If you have to use this feature, do it cautiously.

 We now again switch perspective and consider a new aspect of NHibernate. We
already mentioned the close relationship between transactions and caching in the
introduction of this chapter. The fundamentals of transactions and locking, and also
the session granularity concepts, are of central importance when we consider caching
data in the application tier.

5.3 Caching theory and practice
A major justification for our claim that applications using an object/relational persis-
tence layer are expected to outperform applications built using direct ADO.NET is the
potential for caching. Although we’ll argue passionately that most applications should
be designed so that it’s possible to achieve acceptable performance without the use of a
cache, there is no doubt that for some kinds of applications—especially read-mostly
applications or applications that keep significant metadata in the database—caching
can have an enormous impact on performance.

 We start our exploration of caching with some background information. This
includes an explanation of the different caching and identity scopes and the impact of
caching on transaction isolation. This information and these rules can be applied to
caching in general; their validity isn’t limited to NHibernate applications. This discus-
sion gives you the background to understand why the NHibernate caching system is
like it is. We then introduce the NHibernate caching system and show you how to
enable, tune, and manage the first- and second-level NHibernate cache. We recom-
mend that you carefully study the fundamentals laid out in this section before you
start using the cache. Without the basics, you may quickly run into hard-to-debug con-
currency problems and risk the integrity of your data.

 A cache keeps a representation of current database state close to the application,
either in memory or on the disk of the server machine. The cache is essentially merely
a local copy of the data; it sits between your application and the database. The great

153Caching theory and practice
benefit is that your application can save time by not going to the database every time it
needs data. This can be advantageous when it comes to reducing the strain on a busy
database server and ensuring that data is served to the application quickly. The cache
may be used to avoid a database hit whenever

■ The application performs a lookup by identifier (primary key).
■ The persistence layer resolves an association lazily.

It’s also possible to cache the results of entire queries, so if the same query is issued
repeatedly, the entire results are immediately available. As you’ll see in chapter 8, this
feature is used less often, but the performance gain of caching query results can be
impressive in some situations.

 Before we look at how NHibernate’s cache works, let’s walk through the different
caching options and see how they’re related to identity and concurrency.

5.3.1 Caching strategies and scopes

Caching is such a fundamental concept in object/relational persistence that you can’t
understand the performance, scalability, or transactional semantics of an ORM imple-
mentation without first knowing what caching strategies it uses. There are three main
types of cache:

■ Transaction scope —Attached to the current unit of work, which may be an actual
database transaction or a conversation. It’s valid and used as long as the unit of
work runs. Every unit of work has its own cache.

■ Process scope —Shared among many (possibly concurrent) units of work or trans-
actions. Data in the process-scope cache is accessed by concurrently running
transactions, obviously with implications on transaction isolation. A process-
scope cache may store the persistent instances themselves in the cache, or it
may store just their persistent state in some disassembled format.

■ Cluster scope —Shared among multiple processes on the same machine or
among multiple machines in a cluster. It requires some kind of remote process
communication to maintain consistency. Caching information has to be repli-
cated to all nodes in the cluster. For many (not all) applications, cluster-scope
caching is of dubious value, because reading and updating the cache may be
only marginally faster than going straight to the database. You must take many
parameters into account, so a number of tests and tunings may be required
before you make a decision.

Persistence layers may provide multiple levels of caching. For example, a cache miss (a
cache lookup for an item that isn’t contained in the cache) at transaction scope may
be followed by a lookup at process scope. If that fails, going to the database for the
data may be the last resort.

 The type of cache used by a persistence layer affects the scope of object identity
(the relationship between .NET object identity and database identity).

154 CHAPTER 5 Transactions, concurrency, and caching
CACHING AND OBJECT IDENTITY

Consider a transaction-scope cache. It makes sense if this cache is also used as the
identity scope of persistent objects. If, during a transaction, the application attempts
to retrieve the same object twice, the transaction-scope cache ensures that both look-
ups return the same .NET instance. A transaction-scope cache is a good fit for persis-
tence mechanisms that provide transaction-scoped object identity.

 In the case of the process-scope cache, objects retrieved may be returned by value.
Instead of storing and returning instances, the cache contains tuples of data. Each
unit of work first retrieves a copy of the state from the cache (a tuple) and then uses
that to construct its own persistent instance in memory. Unlike the transaction-scope
cache discussed previously, the scope of the cache and the scope of the object identity
are no longer the same.

 A cluster-scope cache always requires remote communication because it’s likely to
operate over several machines. In the case of POCO-oriented persistence solutions like
NHibernate, objects are always passed remotely by value. Therefore, the cluster-scope
cache handles identity the same way as the process-scope cache; they each store copies
of data and pass that data to the application so they can create their own instances
from it. In NHibernate terms, they’re both second-level caches, the main difference
being that a cluster-scope cache can be distributed across several computers if needed.

 Let’s discuss which scenarios benefit from second-level caching and when to turn
on the process- (or cluster-) scope second-level cache. Note that the first-level transac-
tion scope cache is always on and is mandatory. The decisions to be made are whether
to use the second-level cache, what type to use, and what data it should be used for.
CACHING AND TRANSACTION ISOLATION

A process- or cluster-scope cache makes data retrieved from the database in one unit of
work visible to another unit of work. Essentially, the cache is allowing cached data to be
shared among different units of work, multiple threads, or even multiple computers.
This may have some nasty side effects on transaction isolation. We now discuss some
critical considerations when you’re choosing to use a process- or cluster-scope cache.

 First, if more than one application is updating the database, then you shouldn’t
use process-scope caching, or you should use it only for data that changes rarely and
may be safely refreshed by a cache expiry. This type of data occurs frequently in con-
tent-management applications but rarely in financial applications.

 If you’re designing your application to scale over several machines, you’ll want to
build it to support clustered operation. A process-scope cache doesn’t maintain consis-
tency between the different caches on different machines in the cluster. To achieve this,
you should use a cluster-scope (distributed) cache instead of the process-scope cache.

 Many .NET applications share access to their databases with other legacy applica-
tions. In this case, you shouldn’t use any kind of cache beyond the mandatory transac-
tion-scope cache. There is no way for a cache system to know when the legacy
application updated the shared data. It’s possible to implement application-level func-
tionality to trigger an invalidation of the process- (or cluster-) scope cache when
changes are made to the database, but we don’t know of any standard or best way to

155Caching theory and practice
achieve this. It will never be a built-in feature of NHibernate. If you implement such a
solution, you’ll most likely be on your own, because it’s extremely specific to the envi-
ronment and products used.

 After considering non-exclusive data access, you should establish what isolation
level is required for the application data. Not every cache implementation respects all
transaction isolation levels, and it’s critical to find out what is required. Let’s look at
data that benefits most from a process- (or cluster-) scope cache.

 A full ORM solution lets you configure second-level caching separately for each
class. Good candidate classes for caching are classes that represent

■ Data that rarely changes
■ Noncritical data (for example, content-management data)
■ Data that is local to the application and not shared

Bad candidates for second-level caching are

■ Data that is updated often
■ Financial data
■ Data that is shared with a legacy application

But these aren’t the only rules we usually apply. Many applications have a number of
classes with the following properties:

■ A small number of instances
■ Each instance referenced by many instances of another class or classes
■ Instances rarely (or never) updated

This kind of data is sometimes called reference data. Reference data is an excellent can-
didate for caching with a process or cluster scope, and any application that uses refer-
ence data heavily will benefit greatly if that data is cached. You allow the data to be
refreshed when the cache-timeout period expires.

 We’ve shaped a picture of a dual-layer caching system in the previous sections, with
a transaction-scope first-level and an optional second-level process- or cluster-scope
cache. This is close to the NHibernate caching system.

5.3.2 The NHibernate cache architecture

As we said earlier, NHibernate has a two-level cache architecture. The various ele-
ments of this system are shown in figure 5.5.

 The first-level cache is the ISession. A session lifespan corresponds to either a
database transaction or a conversation (as explained earlier in this chapter). We con-
sider the cache associated with the ISession to be a transaction-scope cache. The
first-level cache is mandatory and can’t be turned off; it also guarantees object identity
inside a transaction.

 The second-level cache in NHibernate is pluggable and may be scoped to the pro-
cess or cluster. This is a cache of state (returned by value), not of persistent instances.
A cache-concurrency strategy defines the transaction isolation details for a particular

156 CHAPTER 5 Transactions, concurrency, and caching
item of data, whereas the cache provider represents the physical, actual cache imple-
mentation. Use of the second-level cache is optional and can be configured on a per-
class and per-association basis.

 NHibernate also implements a cache for query result set that integrates closely with
the second-level cache. This is an optional feature. We discuss the query cache in
chapter 8, because its usage is closely tied to the query being executed.

 Let’s start with using the first-level cache, also called the session cache.
USING THE FIRST-LEVEL CACHE

The session cache ensures that when the application requests the same persistent
object twice in a particular session, it gets back the same (identical) .NET instance.
This sometimes helps avoid unnecessary database traffic. More important, it ensures
the following:

■ The persistence layer isn’t vulnerable to stack overflows in the case of circular
references in a graph of objects.

■ There can never be conflicting representations of the same database row at the
end of a database transaction. At most a single object represents any database
row. All changes made to that object may be safely written to the data-
base (flushed).

■ Changes made in a particular unit of work are always immediately visible to all
other code executed inside that unit of work.

You don’t have to do anything special to enable the session cache. It’s always on and,
for the reasons shown, can’t be turned off.

 Whenever you pass an object to Save(), Update(), or SaveOrUpdate(), and when-
ever you retrieve an object using Load(), Find(), List(), Iterate(), or Filter(),
that object is added to the session cache. When Flush() is subsequently called, the
state of that object is synchronized with the database.

 If you don’t want this synchronization to occur, or if you’re processing a huge
number of objects and need to manage memory efficiently, you can use the Evict()

Cache Concurrency

Strategy

Second-level Cache

Cache Provider

Cache Implementation

(Physical Cache Regions)

Query Cache

Session

First-level Cache

Figure 5.5 NHibernate’s
two-level cache architecture

157Caching theory and practice
method of the ISession to remove the object and its collections from the first-level
cache. This can be useful in several scenarios.
MANAGING THE FIRST-LEVEL CACHE

Consider this frequently asked question: “I get an OutOfMemoryException when I try
to load 100,000 objects and manipulate all of them. How can I do mass updates with
NHibernate?”

 It’s our view that ORM isn’t suitable for mass-update (or mass-delete) operations. If
you have a use case like this, a different strategy is almost always better: call a stored
procedure in the database, or use direct SQL UPDATE and DELETE statements for that
particular use case. Don’t transfer all the data to main memory for a simple operation
if it can be performed more efficiently by the database. If your application is mostly
mass-operation use cases, ORM isn’t the right tool for the job!

 If you insist on using NHibernate for mass operations, you can immediately
Evict() each object after it has been processed (while iterating through a query
result), and thus prevent memory exhaustion. To completely evict all objects from the
session cache, call Session.Clear(). We aren’t trying to convince you that evicting
objects from the first-level cache is a bad thing in general, but that good use cases are
rare. Sometimes, using projection and a report query, as discussed in section 8.4.5,
may be a better solution.

 Note that eviction, like save or delete operations, can be automatically applied to
associated objects. NHibernate evicts associated instances from the ISession if the map-
ping attribute cascade is set to all or all-delete-orphan for a particular association.

 When a first-level cache miss occurs, NHibernate tries again with the second-level
cache if it’s enabled for a particular class or association.
THE NHIBERNATE SECOND-LEVEL CACHE

The NHibernate second-level cache has process or cluster scope; all sessions share the
same second-level cache. The second-level cache has the scope of an ISessionFactory.

 Persistent instances are stored in the second-level cache in a disassembled form.
Think of disassembly as a process a bit like serialization (but the algorithm is much,
much faster than .NET serialization).

 The internal implementation of this process/cluster scope cache isn’t of much
interest; more important is the correct usage of the cache policies—that is, caching strat-
egies and physical cache providers.

 Different kinds of data require different cache policies: the ratio of reads to writes
varies, the size of the database tables varies, and some tables are shared with other
external applications. So the second-level cache is configurable at the granularity of
an individual class or collection role. This lets you, for example, enable the second-
level cache for reference data classes and disable it for classes that represent financial
records. The cache policy involves setting the following:

■ Whether the second-level cache is enabled
■ The NHibernate concurrency strategy
■ The cache expiration policies (such as expiration or priority)

158 CHAPTER 5 Transactions, concurrency, and caching
Not all classes benefit from caching, so it’s extremely important to be able to disable
the second-level cache. To repeat, the cache is usually useful only for read-mostly
classes. If you have data that is updated more often than it’s read, don’t enable the sec-
ond-level cache, even if all other conditions for caching are true! Furthermore, the
second-level cache can be dangerous in systems that share the database with other
writing applications. As we explained in earlier sections, you must exercise careful
judgment here.

 The NHibernate second-level cache is set up in two steps. First, you have to decide
which concurrency strategy to use. After that, you configure cache expiration and cache
attributes using the cache provider.
BUILT-IN CONCURRENCY STRATEGIES

A concurrency strategy is a mediator; it’s responsible for storing items of data in the
cache and retrieving them from the cache. This is an important role, because it also
defines the transaction isolation semantics for that particular item. You have to
decide, for each persistent class, which cache concurrency strategy to use, if you want
to enable the second-level cache.

 Three built-in concurrency strategies are available, representing decreasing levels
of strictness in terms of transaction isolation:

■ Read-write —Maintains read-committed isolation, using a timestamping mecha-
nism. It’s available only in nonclustered environments. Use this strategy for
read-mostly data where it’s critical to prevent stale data in concurrent transac-
tions, in the rare case of an update.

■ Nonstrict-read-write —Makes no guarantee of consistency between the cache and
the database. If there is a possibility of concurrent access to the same entity, you
should configure a sufficiently short expiry timeout. Otherwise, you may read
stale data in the cache. Use this strategy if data rarely changes (many hours,
days, or even a week) and a small likelihood of stale data isn’t of critical con-
cern. NHibernate invalidates the cached element if a modified object is flushed,
but this is an asynchronous operation, without any cache locking or guarantee
that the retrieved data is the latest version.

■ Read-only —Suitable for data that never changes. Use it for reference data only.

Note that with decreasing strictness comes increasing performance. You have to care-
fully evaluate the performance of a clustered cache with full transaction isolation
before using it in production. In many cases, you may be better off disabling the sec-
ond-level cache for a particular class if stale data isn’t an option. First, benchmark
your application with the second-level cache disabled. Then, enable it for good candi-
date classes, one at a time, while continuously testing the performance of your system
and evaluating concurrency strategies.

 It’s possible to define your own concurrency strategy by implementing NHiber-
nate.Cache.ICacheConcurrencyStrategy, but this is a relatively difficult task and
only appropriate for extremely rare cases of optimization.

159Caching theory and practice
 Your next step after considering the concurrency strategies you’ll use for your
cache candidate classes is to pick a cache provider. The provider is a plug-in, the physical
implementation of a cache system.
CHOOSING A CACHE PROVIDER

For now, NHibernate forces you to choose a single cache provider for the whole appli-
cation. The following providers are released with NHibernate:

■ Hashtable —Not intended for production use. It only caches in memory and can
be set using its provider: NHibernate.Cache.HashtableCacheProvider (avail-
able in NHibernate.dll.).

■ SysCache —Relies on System.Web.Caching.Cache for the underlying implemen-
tation, so you can refer to the documentation of the ASP.NET caching feature to
understand how it works. Its NHibernate provider is the class NHibernate.
Caches.SysCache.SysCacheProvider in library NHibernate.Caches.SysCache.
dll. This provider should only be used with ASP.NET Web Applications.

■ Prevalence —Makes it possible to use the underlying Bamboo.Prevalence imple-
mentation as a cache provider. Its NHibernate provider is NHibernate.
Caches.Prevalence.PrevalenceCacheProvider in the library NHibernate.
Caches.Prevalence.dll. You can also visit Bamboo.Prevalence’s website:
http://bbooprevalence.sourceforge.net/.

You’ll learn about some distributed cache providers in the next section. And it’s easy
to write an adaptor for other products by implementing NHibernate.Cache.

ICacheProvider.
 Every cache provider supports NHibernate Query Cache and is compatible with

every concurrency strategy (read-only, nonstrict-read-write, and read-write).
 Setting up caching therefore involves two steps:

1 Look at the mapping files for your persistent classes, and decide which cache-
concurrency strategy you’d like to use for each class and each association.

2 Enable your preferred cache provider in the NHibernate configuration, and
customize the provider-specific settings.

Let’s add caching to the CaveatEmptor Category and Item classes.

5.3.3 Caching in practice

Remember that you don’t have to explicitly enable the first-level cache. Let’s declare
caching policies and set up cache providers for the second-level cache in the Cave-
atEmptor application.

 The Category has a small number of instances and is rarely updated, and instances
are shared among many users, so it’s a great candidate for use of the second-level
cache. Start by adding the mapping element required to tell NHibernate to cache
Category instances:

[Class(Table="CATEGORY")]
public class Category {

http://bbooprevalence.sourceforge.net/

160 CHAPTER 5 Transactions, concurrency, and caching
 [Cache(-1, Usage=CacheUsage.ReadWrite)]
 [Id]
 public long Id { ... }
}

Note that, like the attribute [Discriminator], you can put [Cache] on any field/
property; just be careful when mixing it with other attributes (here, you use the posi-
tion -1 because it must come before the other attributes).

 Here is the corresponding XML mapping:

<class
 name="Category"
 table="CATEGORY">
 <cache usage="read-write"/>
 <id >
</class>

The usage="read-write" attribute tells NHibernate to use a read-write concurrency
strategy for the Category cache. NHibernate will now try the second-level cache when-
ever you navigate to a Category or when you load a Category by identifier.

 You use read-write instead of nonstrict-read-write because Category is a highly con-
current class, shared among many concurrent transactions, and it’s clear that a read-
committed isolation level is good enough. Nonstrict-read-write would probably be an
acceptable alternative, because a small probability of inconsistency between the cache
and database is acceptable (the category hierarchy has little financial significance).

 This mapping is enough to tell NHibernate to cache all simple Category prop-
erty values but not the state of associated entities or collections. Collections require
their own <cache> element. For the Items collection, you’ll use a read-write concur-
rency strategy:

<class
 name="Category"
 table="CATEGORY">
 <cache usage="read-write"/>
 <id
 <set name="Items" lazy="true">
 <cache usage="read-write"/>
 <key
 </set>
</class>

This cache will be used when enumerating the collection category.Items, for exam-
ple. Note that deleting an item that exists on a collection in the second-level cache will
cause an exception; make sure that you remove the item from the collection in the
cache before deleting it.

 A collection cache holds only the identifiers of the associated item instances. If you
require the instances themselves to be cached, you must enable caching of the Item
class. A read-write strategy is especially appropriate here. Your users don’t want to
make decisions (placing a Bid) based on possibly stale data. Let’s go a step further and
consider the collection of Bids. A particular Bid in the Bids collection is immutable;

161Caching theory and practice
but you have to map the collection using read-write, because new bids may be made
at any time (and it’s critical that you be immediately aware of new bids):

<class
 name="Item"
 table="ITEM">
 <cache usage="read-write"/>
 <id
 <set name="Bids" lazy="true">
 <cache usage="read-write"/>
 <key
 </set>
</class>

To the immutable Bid class, you apply a read-only strategy:

<class
 name="Bid"
 table="BID">
 <cache usage="read-only"/>
 <id
</class>

Cached Bid data is valid indefinitely, because bids are never updated. No cache invali-
dation is required. (Instances may be evicted by the cache provider—for example, if
the maximum number of objects in the cache is reached.)

 User is an example of a class that could be cached with the nonstrict-read-write
strategy, but we aren’t certain that it makes sense to cache users.

 Let’s set the cache provider, expiration policies, and physical properties of the
cache. You use cache regions to configure class and collection caching individually.
UNDERSTANDING CACHE REGIONS

NHibernate keeps different classes/collections in different cache regions. A region is a
named cache: a handle by which you can reference classes and collections in the
cache-provider configuration and set the expiration policies applicable to that region.

 The name of the region is the class name, in the case of a class cache, or the class
name together with the property name, in the case of a collection cache. Category
instances are cached in a region named NHibernate.Auction.Category, and the
items collection is cached in a region named NHibernate.Auction.Category.Items.

 You can use the NHibernate configuration property hibernate.cache.

region_prefix to specify a root region name for a particular ISessionFactory. For
example, if the prefix was set to Node1, Category would be cached in a region named
Node1.NHibernate.Auction.Category. This setting is useful if your application
includes multiple ISessionFactory instances.

 Now that you know about cache regions, let’s configure the expiry policies for the
Category cache. First you’ll choose a cache provider.
SETTING UP A LOCAL CACHE PROVIDER

You need to set the property that selects a cache provider:

<add
 key="hibernate.cache.provider_class"

162 CHAPTER 5 Transactions, concurrency, and caching
 value="NHibernate.Caches.SysCache.SysCacheProvider,
NHibernate.Caches.SysCache"

/>

Here, you choose SysCache as your second-level cache.
 Now, you need to specify the expiry policies for the cache regions. SysCache

provides two parameters: an expiration value which is the number of seconds to
wait before expiring each item (the default value is 300 seconds) and a priority value
that is a numeric cost of expiring each item, where 1 is a low cost, 5 is the highest,
and 3 is normal. Note that only values 1 through 5 are valid; they refer to the
System.Web.Caching.CacheItemPriority enumeration.

 SysCache has a configuration-file section handler to allow configuring different
expirations and priorities for different regions. Here’s how you can configure the
Category class:

<?xml version="1.0" ?>
<configuration>
 <configSections>
 <section
 name="syscache"
 type="NHibernate.Caches.SysCache.SysCacheSectionHandler,
 NHibernate.Caches.SysCache" />
 </configSections>
 <syscache>
 <cache region="Category" expiration="36000" priority="5" />
 </syscache>
</configuration>

There are a small number of categories, and they’re all shared among many concur-
rent transactions. You therefore define a high expiration value (10 hours) and give it a
high priority so the categories stay in the cache as long as possible.

 Bids, on the other hand, are small and immutable, but there are many of them;
you must configure SysCache to carefully manage the cache memory consumption.
You use both a low expiration value and a low priority:

<cache region="Bid" expiration="300" priority="1" />

The result is that cached bids are removed from the cache after five minutes or if the
cache is full (because they have the lowest priority).

 Optimal cache-eviction policies are, as you can see, specific to the particular data
and particular application. You must consider many external factors, including avail-
able memory on the application server machine, expected load on the database
machine, network latency, existence of legacy applications, and so on. Some of these
factors can’t possibly be known at development time, so you’ll often need to iteratively
test the performance impact of different settings in the production environment or a
simulation of it. This is especially true in a more complex scenario, with a replicated
cache deployed to a cluster of server machines.
USING A DISTRIBUTED CACHE

SysCache and Prevalence are excellent cache providers if your application is deployed
on a single machine. But enterprise applications supporting thousands of concurrent

163Caching theory and practice
users may require more computing power, and scaling your application may be critical
to the success of your project. NHibernate applications are naturally scalable—that is,
NHibernate behaves the same whether it’s deployed to a single machine or to many
machines. The only feature of NHibernate that must be configured specifically for
clustered operation is the second-level cache. With a few changes to your cache con-
figuration, you can use a clustered caching system.

 It isn’t necessarily wrong to use a purely local (non–cluster-aware) cache provider in
a cluster. Some data—especially immutable data, or data that can be refreshed by cache
timeout—doesn’t require clustered invalidation and may safely be cached locally, even
in a clustered environment. You may be able to have each node in the cluster use a local
instance of SysCache, and carefully choose sufficiently short expiration values.

 But if you require strict cache consistency in a clustered environment, you must
use a more sophisticated cache provider. Some distributed cache providers are avail-
able for NHibernate. You can consider the following:

■ MemCache —Released with NHibernate. It uses memcached, a distributed cache
system available under Linux, so you can use it with Mono (or use the VMWare
Memcached appliance under Windows). For more details, visit http://
www.danga.com/memcached/. Its NHibernate provider is the class NHibernate.
Caches.MemCache.MemCacheProvider in the library NHibernate.Caches.

MemCache.dll.
■ NCache —A commercial distributed cache provider. Its website is http://

www.alachisoft.com/ncache/.
■ Microsoft Velocity —A commercial distributed cache, currently in CTP2 (at tech-

nology preview stage).

We don’t dig into the details of these distributed cache providers. Distributed caching
is a complex topic; we recommend that you read some articles about this topic and
test these providers.

 Note that some distributed cache providers work only with some cache concur-
rency strategies. A nice trick can help you avoid checking your mapping files one by
one. Instead of placing a [Cache] attribute in your entities or placing <cache>
elements in your mapping files, you can centralize cache configuration in
hibernate.cfg.xml:

<hibernate-configuration>
 <session-factory>
 <class-cache
 class="NHibernate.Auction.Model.Bid, NHibernate.Auction"
 usage="read-only"/>
 <collection-cache
 collection="NHibernate.Auction.Model.Item.Bids"
 usage="read-write"/>
 </session-factory>
</hibernate-configuration>

You enable read-only caching for Bid and read-write caching for the Bids collection in
this example. But be aware of one important caveat: at the time of this writing,

http://www.danga.com/memcached/
http://www.danga.com/memcached/
http://www.alachisoft.com/ncache/
http://www.alachisoft.com/ncache/

164 CHAPTER 5 Transactions, concurrency, and caching
NHibernate will run into a conflict if you also have <cache> elements in the mapping
file for Item. You therefore can’t use the global configuration to override the mapping
file settings. We recommend that you use the centralized cache configuration from
the start, especially if you aren’t sure how your application may be deployed. It’s also
easier to tune cache settings with a centralized configuration.

 There is an optional setting to consider. For cluster cache providers, it may be bet-
ter to set the NHibernate configuration option hibernate.cache.use_minimal_puts
to true. When this setting is enabled, NHibernate adds an item to the cache only after
checking to ensure the item isn’t already cached. This strategy performs better if
cache writes (puts) are much more expensive than cache reads (gets). This is the case
for a replicated cache in a cluster, but not for a local cache (the default is false, opti-
mized for a local cache). Whether you’re using a cluster or a local cache, you some-
times need to control it programmatically for testing or tuning purposes.
CONTROLLING THE SECOND-LEVEL CACHE

NHibernate has some useful methods that will help you test and tune your cache. You
may wonder how to disable the second-level cache completely. NHibernate loads the
cache provider and starts using the second-level cache only if you have any cache dec-
larations in your mapping files or XML configuration file. If you comment them out,
the cache is disabled. This is another good reason to prefer centralized cache configu-
ration in hibernate.cfg.xml.

 Just as the ISession provides methods for controlling the first-level cache pro-
grammatically, so does the ISessionFactory for the second-level cache.

 You can call Evict() to remove an element from the cache, by specifying the class
and the object identifer value:

SessionFactory.Evict(typeof(Category), 123);

You can also evict all elements of a certain class or evict only a particular collection
role:

SessionFactory.Evict(typeof(Category));

You’ll rarely need these control mechanisms; use them with care, because they don’t
respect any transaction isolation semantics of the usage strategy.

5.4 Summary
This chapter was dedicated to transactions (fine-grained and coarse-grained), concur-
rency and data caching.

 You learned that for a single unit of work, either all operations should be com-
pletely successful or the whole unit of work should fail (and changes made to persis-
tent state should be rolled back). This led us to the notion of a transaction and the
ACID attributes. A transaction is atomic, leaves data in a consistent state, and is iso-
lated from concurrently running transactions, and you have the guarantee that data
changed by a transaction is durable.

165Summary
 You use two transaction concepts in NHibernate applications: short database trans-
actions and long-running conversations. Usually, you use read committed isolation for
database transactions, together with optimistic concurrency control (version and time-
stamp checking) for long conversations. NHibernate greatly simplifies the implemen-
tation of conversations because it manages version numbers and timestamps for you.

 Finally, we discussed the fundamentals of caching, and you learned how to use
caching effectively in NHibernate applications.

 NHibernate provides a dual-layer caching system with a first-level object cache (the
ISession) and a pluggable second-level data cache. The first-level cache is always
active—it’s used to resolve circular references in your object graph and to optimize
performance in a single unit of work. The second-level cache, on the other hand, is
optional and works best for read-mostly candidate classes. You can configure a non-
volatile second-level cache for reference (read-only) data or even a second-level cache
with full transaction isolation for critical data. But you have to carefully examine
whether the performance gain is worth the effort. The second-level cache can be cus-
tomized fine-grained, for each persistent class and even for each collection and class
association. Used correctly and thoroughly tested, caching in NHibernate gives you a
level of performance that is almost unachievable in a hand-coded data access layer.

 Now that we’ve covered most of the fundamental aspects key to NHibernate appli-
cations, we can delve into some of the more advanced capabilities of NHibernate. The
next chapter will start by discussing some of the advanced NHibernate mapping con-
cepts that will enable you to handle the most demanding persistence requirements.

Advanced
 mapping concepts
In chapter 3, we introduced the most important ORM features provided by NHiber-
nate, including basic class and property mappings, inheritance mappings, compo-
nent mappings, and one-to-many association mappings. We now extend these
topics by turning to the more exotic collection and association mappings that allow
you to handle trickier use cases. It’s worth noting that these more exotic mappings
should only be used with careful consideration; it’s possible to implement any
domain model using simpler component mappings (one-to-many associations and
one-to-one associations). Throughout this chapter, we advise you about when you
may or may not want to use the advanced features as they’re discussed.

 Some of these features require you to have a more in-depth understanding of
NHibernate’s type system, particularly the distinction between entity and value
types. That is where we begin.

This chapter covers
■ The NHibernate type system
■ Custom mapping types
■ Collection mappings
■ One-to-one and many-to-many associations
166

167Understanding the NHibernate type system
6.1 Understanding the NHibernate type system
We first distinguished between entity and value types back in section 3.6.1. In order
to give you a better understanding of the NHibernate type system, we elaborate a lit-
tle more.

 Entities are the coarse-grained classes in a system. You usually define the features of
a system in terms of the entities involved: “The user places a bid for an item” is a typi-
cal feature definition that mentions three entities—user, bid, and item. In contrast,
value types are the much more fine-grained classes in a system, such as strings, num-
bers, dates, and monetary amounts. These fine-grained classes can be used in many
places and serve many purposes; the value-type string can store email address, user-
names, and many other things. Strings are simple value types, but it’s possible (but less
common) to create value types that are more complex. For example, a value type like
an address can contain several fields.

 How do you differentiate between value types and entities? From a more formal
standpoint, we can say an entity is any class whose instances have their own persistent
identity, and a value type is a class whose instances don’t. The entity instances may
therefore be in any of the three persistent lifecycle states: transient, detached, or per-
sistent. But we don’t consider these lifecycle states to apply to the simpler value-type
instances. Furthermore, because entities have their own lifecycle, the Save() and
Delete() methods of the NHibernate ISession inter-
face apply to them, but never to value-type instances. To
illustrate, consider figure 6.1.

 TotalAmount is an instance of value type Money.
Because value types are completely bound to their own-
ing entities, TotalAmount is saved only when the Order
is saved.

6.1.1 Associations and value types

As we said, not all value types are simple. It’s possible for value types to also define
associations. For example, the Money value type may have a property called Currency
that is an association to a Currency entity, as shown in figure 6.2.

 If your value types have associations, they must always point to entities. The reason
is that, if those associations could point from entities to value types, a value type could
potentially belong to several entities, which isn’t desirable. This is one of the great
things about value types; if you update a value-type instance, you know that it affects
only the entity that owns it. For example, changing the TotalAmount of one Order
can’t accidentally affect others.

 So far, we’ve talked about value types and
entities from an object-oriented perspective.
To build a more complete picture, we now
look at how the relational model sees value
types and entities, and how NHibernate
bridges the gap.

<<entity>>
Order

Id: int
OrderDate: DateTime
TotalAmount: Money

Figure 6.1 An order entity with
a TotalAmount value type

<<value type>>
Money

Amount: double
Currency: Currency

<<entity>>
Currency

Id: string
Name: string
Symbol: string

Figure 6.2 The Money value type with an
association to a Currency entity

168 CHAPTER 6 Advanced mapping concepts
6.1.2 Bridging from objects to database

You may be aware that a database architect sees the world of value types and entities
slightly differently from this object-oriented view of things. In the database, tables rep-
resent the entities, and columns represent the values. Even join tables and lookup
tables are entities.

 If all tables represent entities in the database, does that mean you have to map all
tables to entities in your .NET domain model? What about those value types you want
in your model? NHibernate provides constructs for dealing with this. For example, a
many-to-many association mapping hides the intermediate association table from the
application, so you don’t end up with an unwanted entity in your domain model.
Similarly, a collection of value-typed strings behaves like a value type from the point
of view of the .NET domain model even though it’s mapped to its own table in
the database.

 These features have their uses and can often simplify your C# code. But over time,
we’ve become suspicious of them; these “hidden” entities often end up needing expo-
sure in applications as business requirements evolve. The many-to-many association
table, for example, often has columns added as the application matures, so the rela-
tionship itself becomes an entity. You may not go far wrong if you make every data-
base-level entity be exposed to the application as an entity class. For example, we’d be
inclined to model the many-to-many association as two one-to-many associations to an
intervening entity class. We’ll leave the final decision to you and return to the topic of
many-to-many entity associations later in this chapter.

6.1.3 Mapping types

So far, we’ve discussed the differences between value types and entities as seen from
the object-oriented and relational-database perspectives. You know that mapping enti-
ties is straightforward—entity classes are always mapped to database tables using
<class>, <subclass>, and <joined-subclass> mapping elements.

 Value types need something more, which is where mapping types enter the pic-
ture. Consider this mapping of the CaveatEmptor User and email address:

<property
 name="Email"
 column="EMAIL"
 type="String"/>

In ORM, you have to worry about both .NET types and SQL data types. In this example,
imagine that the Email field is a .NET string, and the EMAIL column is a SQL var-
char. You want to tell NHibernate know how to carry out this conversion, which is
where NHibernate mapping types come in. In this case, you specified the mapping
type "String", which is appropriate for this particular conversion.

 The String mapping type isn’t the only one built into NHibernate; NHibernate
comes with various mapping types that define default persistence strategies for primi-
tive .NET types and certain classes, such as DateTime.

169Understanding the NHibernate type system
6.1.4 Built-in mapping types

NHibernate’s built-in mapping types usually reflect the name of the .NET type they
map. Sometimes you’ll have a choice of mapping types available to map a particular
.NET type to the database. But the built-in mapping types aren’t designed to perform
arbitrary conversions, such as mapping a VARCHAR field value to a .NET Int32 property
value. If you want this kind of functionality, you have to define your own custom value
types. We get to that topic a little later in this chapter.

 We now discuss the basic types—date and time, objects, large objects, and various
other built-in mapping types—and show you what .NET and System.Data.DbType
data types they handle. DbTypes are used to infer the data-provider types (hence SQL
data types).
.NET PRIMITIVE MAPPING TYPES

The basic mapping types in table 6.1 map .NET primitive types to appropriate DbTypes.
 You’ve probably noticed that your database doesn’t support some of the DbTypes

listed in table 6.1. But ADO.NET provides a partial abstraction of vendor-specific SQL

Table 6.1 Primitive types

Mapping type .NET type System.Data.DbType

Int16 System.Int16 DbType.Int16

Int32 System.Int32 DbType.Int32

Int64 System.Int64 DbType.Int64

Single System.Single DbType.Single

Double System.Double DbType.Double

Decimal System.Decimal DbType.Decimal

Byte System.Byte DbType.Byte

Char System.Char DbType.StringFixedLength
—one character

AnsiChar System.Char DbType.AnsiStringFixedLength
—one character

Boolean System.Boolean DbType.Boolean

Guid System.Guid DbType.Guid

PersistentEnum System.Enum
(an enumeration)

DbType for the underlying value

TrueFalse System.Boolean DbType.AnsiStringFixedLength
—either 'T' or 'F'

YesNo System.Boolean DbType.AnsiStringFixedLength
—either 'Y' or 'N'

170 CHAPTER 6 Advanced mapping concepts
data types, allowing NHibernate to work with ANSI-standard types when executing Data
Manipulation Language (DML). For database-specific DDL generation, NHibernate
translates from the ANSI-standard type to an appropriate vendor-specific type, using the
built-in support for specific SQL dialects. (You usually don’t have to worry about SQL
data types if you’re using NHibernate for data access and data schema definition.)

 NHibernate supports a number of mapping types coming from Hibernate for com-
patibility (useful for those coming over from Hibernate or using Hibernate tools to gen-
erate hbm.xml files). Table 6.2 lists the additional names of NHibernate mapping types.

From this table, you can see that writing type="integer" or type="int" is identical to
type="Int32". Note that this table contains many mapping types that will be discussed
in the following sections.
DATE/TIME MAPPING TYPES

Table 6.3 lists NHibernate types associated with dates, times, and timestamps. In your
domain model, you may choose to represent date and time data using either

Table 6.2 Additional names of NHibernate mapping types

Mapping type Additional name Mapping type Additional name

Binary binary Int16 short

Boolean boolean Int32 int

Byte byte Int32 integer

Character character Int64 long

CultureInfo locale Single float

DateTime datetime String string

Decimal big_decimal TrueFalse true_false

Double double Type class

Guid guid YesNo yes_no

Table 6.3 Date and time types

Mapping type .NET type System.Data.DbType

DateTime System.DateTime DbType.DateTime—ignores milliseconds

Ticks System.DateTime DbType.Int64

TimeSpan System.TimeSpan DbType.Int64

Timestamp System.DateTime DbType.DateTime—as specific as the
database supports

171Understanding the NHibernate type system
System.DateTime or System.TimeSpan. Because they have different purposes, the
choice should be easy.
OBJECT MAPPING TYPES

All of the .NET types in tables 6.1 and 6.3 are value types (derived from System.Value-
Type). This means they can’t be null unless you use the .NET 2.0 Nullable<T> struc-
ture or the Nullables add-in, as discussed in the next section. Table 6.4 lists NHibe-
rnate types for handling .NET types derived from System.Object (which can store
null values).

This table is completed by tables 6.5 and 6.6, which also contain nullable mapping types.
LARGE OBJECT MAPPING TYPES

Table 6.5 lists NHibernate types for handling binary data and large objects. Note that
none of these types may be used as the type of an identifier property.

 BinaryBlob and StringClob are mainly supported by SQL Server. They can have a
large size and are fully loaded in memory. This can be a performance killer if you use

these types to store large objects—use this feature carefully. Note that you must set the
NHibernate property prepare_sql to true to enable this feature.

 You can find up-to-date design patterns and tips for large object usage on the NHi-
bernate website.
VARIOUS CLR MAPPING TYPES

Table 6.6 lists NHibernate types for various other types of the CLR that may be repre-
sented as DbType.Strings in the database.

 Certainly, <property> isn’t the only NHibernate mapping element that has a type
attribute.

Table 6.4 Nullable object types

Mapping type .NET type System.Data.DbType

String System.String DbType.String

AnsiString System.String DbType.AnsiString

Table 6.5 Binary and large object types

Mapping type .NET type System.Data.DbType

Binary System.Byte[] DbType.Binary

BinaryBlob System.Byte[] DbType.Binary

StringClob System.String DbType.String

Serializable Any System.Object marked with
SerializableAttribute

DbType.Binary

172 CHAPTER 6 Advanced mapping concepts
6.1.5 Using mapping types

All of the basic mapping types may appear almost anywhere in the NHibernate map-
ping document, on normal property, identifier property, and other mapping ele-
ments. The <id>, <property>, <version>, <discriminator>, <index>, and <element>
elements all define an attribute named type. (There are certain limitations on which
mapping basic types may function as an identifier or discriminator type.)

 You can see how useful the built-in mapping types are in this mapping for the
BillingDetails class:

<class name="BillingDetails"
 table="BILLING_DETAILS"
 lazy="false"
 discriminator-value="0">
 <id name="Id" type="Int32" column="BILLING_DETAILS_ID">
 <generator class="native"/>
 </id>
 <discriminator type="Char" column="TYPE"/>
 <property name="Number" type="String"/>
 ...
</class>

The BillingDetails class is mapped as an entity. Its discriminator, id, and Number
properties are value typed, and you use the built-in NHibernate mapping types to spec-
ify the conversion strategy.

 It’s often not necessary to explicitly specify a built-in mapping type in the XML
mapping document. For instance, if you have a property of .NET type System.String,
NHibernate will discover this using reflection and select String by default. You can
easily simplify the previous mapping example:

<class name="BillingDetails"
 table="BILLING_DETAILS"
 lazy="false"
 discriminator-value="0">
 <id name="Id" column="BILLING_DETAILS_ID">
 <generator class="native"/>
 </id>
 <discriminator type="Char" column="TYPE"/>
 <property name="Number"/>
 ...
</class>

Table 6.6 Other CLR-related types

Mapping type .NET type System.Data.DbType

CultureInfo System.Globalization.CultureInfo DbType.String
—five characters for culture

Type System.Type DbType.String holding
the Assembly Qualified Name

173Understanding the NHibernate type system
For each of the built-in mapping types, a constant is defined by the class NHibernate.
NHibernateUtil. For example, NHibernate.String represents the String mapping
type. These constants are useful for query-parameter binding, as discussed in more
detail in chapter 8:

session.CreateQuery("from Item i where i.Description like :desc")
 .SetParameter("desc", desc, NHibernate.String)
 .List();

These constants are also useful for programmatic manipulation of the NHibernate
mapping metamodel, as discussed in chapter 3.

 Of course, NHibernate isn’t limited to the built-in mapping types; you can create
your own custom mapping types for handling certain scenarios. We look this next and
explain how the mapping type system is central to NHibernate’s flexibility.
CREATING CUSTOM MAPPING TYPES

Object-oriented languages like C# make it easy to define new types by writing new
classes. Indeed, this is a fundamental part of the definition of object orientation. If
you were limited to the predefined built-in NHibernate mapping types when declaring
properties of persistent classes, you’d lose much of C#’s expressiveness. Furthermore,
your domain model implementation would be tightly coupled to the physical data
model, because new type conversions would be impossible. In order to avoid that,
NHibernate provides a powerful feature called custom mapping types.

 NHibernate provides two user-friendly interfaces that applications can use when
defining new mapping types. The first is NHibernate.UserTypes.IUserType. IUser-
Type is suitable for most simple cases and even for some more complex problems.
Let’s use it in a simple scenario.

 The Bid class defines an Amount property, and the Item class defines an Initial-
Price property; both are monetary values. So far, you’ve only used a System.Double to
represent the value, mapped with Double to a single DbType.Double column.

 Suppose you want to support multiple currencies in the auction application and that
you have to refactor the existing domain model for this change. One way to implement
this change is to add new properties to Bid and Item: AmountCurrency and Initial-
PriceCurrency. You can then map these new properties to additional VARCHAR columns
with the built-in String mapping type. If you have currency stored in 100 places, this is
a lot of changes. We hope you never use this approach!
CREATING AN IMPLEMENTATION OF IUSERTYPE

Instead, you should create a MonetaryAmount class that encapsulates both currency
and amount. This is a class of the domain model and doesn’t have any dependency on
NHibernate interfaces:

[Serializable]
public class MonetaryAmount
{
 private readonly double value;
 private readonly string currency;

174 CHAPTER 6 Advanced mapping concepts
 public MonetaryAmount(double value, string currency)
 {
 this.value = value;
 this.currency = currency;
 }
 public double Value { get { return value; } }
 public string Currency { get { return currency; } }
 public override bool Equals(object obj) { ... }
 public override int GetHashCode() { ... }
}

You also make life simpler by making MonetaryAmount an immutable class, meaning it
can’t be changed after it’s instantiated. You have to implement Equals() and Get-
HashCode() to complete the class—but there is nothing special to consider here aside
from the facts that they must be consistent, and GetHashCode() should return mostly
unique numbers.

 You’ll use this new MonetaryAmount to replace the Double, as defined on the
InitialPrice property for Item. You’ll benefit from using this new class in other
places, such as the Bid.Amount.

 The next challenge is in mapping the new MonetaryAmount properties to the data-
base. Suppose you’re working with a legacy database that contains all monetary
amounts in USD. The new class means the application code is no longer restricted to a
single currency, but it will take time for the database team to make the changes. Until
this happens, you’d like to store just the Amount property of MonetaryAmount to the
database. Because you can’t store the currency yet, you’ll convert all Amounts to USD
before you save them and from USD when you load them.

 The first step in handling this is to tell NHibernate how to handle the Monetary-
Amount type. To do so, you create a MonetaryAmountUserType class that implements
the NHibernate interface IUserType. The custom mapping type is shown in listing 6.1.

using System;
using System.Data;
using NHibernate.UserTypes;
public class MonetaryAmountUserType : IUserType {
 private static readonly NHibernate.SqlTypes.SqlType[] SQL_TYPES =
 { NHibernateUtil.Double.SqlType };
 public NHibernate.SqlTypes.SqlType[] SqlTypes {
 get { return SQL_TYPES; }
 }
 public Type ReturnedType { get { return typeof(MonetaryAmount); } }
 public new bool Equals(object x, object y) {
 if (object.ReferenceEquals(x,y)) return true;
 if (x == null || y == null) return false;
 return x.Equals(y);
 }
 public object DeepCopy(object value) { return value; }
 public bool IsMutable { get { return false; } }

Listing 6.1 Custom mapping type for monetary amounts in USD

B

C
D

E
F

175Understanding the NHibernate type system
 public object NullSafeGet(IDataReader dr,
 string[] names,
 object owner
){
 object obj = NHibernateUtil.Double.NullSafeGet(dr, names[0]);
 if (obj==null) return null;
 double valueInUSD = (double) obj;
 return new MonetaryAmount(valueInUSD, "USD");
 }
 public void NullSafeSet(IDbCommand cmd, object obj, int index) {
 if (obj == null) {
 ((IDataParameter)cmd.Parameters[index]).Value = DBNull.Value;
 } else {
 MonetaryAmount anyCurrency = (MonetaryAmount)obj;
 MonetaryAmount amountInUSD =
 MonetaryAmount.Convert(anyCurrency, "USD");

 ((IDataParameter)cmd.Parameters[index]).Value = amountInUSD.Value;
 }
 }

 public static MonetaryAmount Convert(MonetaryAmount m,
 string targetCurrency)
 {
 //...
 }
}

The SqlTypes property tells NHibernate what SQL column types to use for DDL
schema generation B. The types are subclasses of NHibernate.SqlTypes.SqlType.
Notice that this property returns an array of types. An implementation of IUserType
may map a single property to multiple columns, but the legacy data model has only a
single Double.

 ReturnedType tells NHibernate what .NET type is mapped by this IUserType C.
 The IUserType is responsible for dirty-checking property values D. The Equals()

method compares the current property value to a previous snapshot and determines
whether the property is dirty and must be saved to the database.

 The IUserType is also partially responsible for creating the snapshot in the first
place E. Because MonetaryAmount is an immutable class, the DeepCopy() method
returns its argument. In the case of a mutable type, it would need to return a copy of
the argument to be used as the snapshot value. This method is also called when an
instance of the type is written to or read from the second-level cache.

 NHibernate can make some minor performance optimizations for immutable
types. The IsMutable property F tells NHibernate that this type is immutable.

 The NullSafeGet() method G retrieves the property value from the ADO.NET
IDataReader. You can also access the owner of the component if you need it for the
conversion. All database values are in USD, so you have to convert the MonetaryAmount
returned by this method before you show it to the user.

G

H

I

176 CHAPTER 6 Advanced mapping concepts
 The NullSafeSet() method writes the property value to the ADO.NET IDb-
Command H. This method takes whatever currency is set and converts it to a simple
Double USD value before saving.

 Note that, for briefness, we haven’t provided a Convert function I. If you were to
implement it, it would have code that converts between various currencies.

 You can map the InitialPrice property of Item as follows:

<property name="InitialPrice"
 column="INITIAL_PRICE"
 type="NHibernate.Auction.CustomTypes.MonetaryAmountUserType,

NHibernate.Auction"/>

This is the simplest kind of transformation that an implementation of IUserType can
perform. It takes a value-type class and maps it to a single database column. Much
more sophisticated things are possible; a custom mapping type can perform valida-
tion, it can read and write data to and from an Active Directory, or it can even retrieve
persistent objects from a different NHibernate ISession for a different database.
You’re limited mainly by your imagination and performance concerns.

 In a perfect world, you’d represent both the amount and currency of the monetary
amounts in the database, so you’re not limited to storing USD. You can use an IUser-
Type for this, but it’s limited; if an IUserType is mapped with more than one property,
you can’t use those properties in your HQL or Criteria queries. The NHibernate query
engine won’t know anything about the individual properties of MonetaryAmount. You
can access the properties in your C# code (MonetaryAmount is a regular class of the
domain model, after all), but not in NHibernate queries.

 To allow for a custom value type with multiple properties that can be accessed in
queries, you can use the ICompositeUserType interface. This interface exposes the
properties of the MonetaryAmount to NHibernate.
CREATING AN IMPLEMENTATION OF ICOMPOSITEUSERTYPE

To demonstrate the flexibility of custom mapping types, you won’t have to change the
MonetaryAmount domain model class at all—you’ll change only the custom mapping
type, as shown in listing 6.2.

using System;
using System.Data;
using NHibernate.UserTypes;
public class MonetaryAmountCompositeUserType : ICompositeUserType {
 public Type ReturnedClass { get { return typeof(MonetaryAmount); } }
 public new bool Equals(object x, object y) {
 if (object.ReferenceEquals(x,y)) return true;
 if (x == null || y == null) return false;
 return x.Equals(y);
 }
 public object DeepCopy(object value) { return value; }
 public bool IsMutable { get { return false; } }
 public object NullSafeGet(IDataReader dr, string[] names,

Listing 6.2 Custom mapping type for monetary amounts in new database schemas

177Understanding the NHibernate type system
 NHibernate.Engine.ISessionImplementor session, object owner) {
 object obj0 = NHibernateUtil.Double.NullSafeGet(dr, names[0]);
 object obj1 = NHibernateUtil.String.NullSafeGet(dr, names[1]);
 if (obj0==null || obj1==null) return null;
 double value = (double) obj0;
 string currency = (string) obj1;
 return new MonetaryAmount(value, currency);
 }
 public void NullSafeSet(IDbCommand cmd, object obj, int index,
 NHibernate.Engine.ISessionImplementor session) {
 if (obj == null) {
 ((IDataParameter)cmd.Parameters[index]).Value = DBNull.Value;
 ((IDataParameter)cmd.Parameters[index+1]).Value = DBNull.Value;
 } else {
 MonetaryAmount amount = (MonetaryAmount)obj;
 ((IDataParameter)cmd.Parameters[index]).Value = amount.Value;
 ((IDataParameter)cmd.Parameters[index+1]).Value = amount.Currency;
 }
 }
 public string[] PropertyNames {
 get { return new string[] { "Value", "Currency" }; }
 }
 public NHibernate.Type.IType[] PropertyTypes {
 get { return new NHibernate.Type.IType[] {
 NHibernateUtil.Double, NHibernateUtil.String }; }
 }
 public object GetPropertyValue(object component, int property) {
 MonetaryAmount amount = (MonetaryAmount) component;
 if (property == 0)
 return amount.Value;
 else
 return amount.Currency;
 }
 public void SetPropertyValue(object comp, int property,
 object value) {
 throw new Exception("Immutable!");
 }
 public object Assemble(object cached,
 NHibernate.Engine.ISessionImplementor session, object owner) {
 return cached;
 }
 public object Disassemble(object value,
 NHibernate.Engine.ISessionImplementor session) {
 return value;
 }
}

The implementation of ICompositeUserType has its own properties, defined by Prop-
ertyNames B. Similarly, the properties each have their own type, as defined by
PropertyTypes C.

 The GetPropertyValue() method D returns the value of an individual property
of the MonetaryAmount. Because MonetaryAmount is immutable, you can’t set property
values individually E. This isn’t a problem because this method is optional.

B

C

D

E

F

G

178 CHAPTER 6 Advanced mapping concepts
 The Assemble() method is called when an instance of the type is read from the
second-level cache F. The Disassemble() method is called when an instance of the
type is written to the second-level cache G.

 The order of properties must be the same in the PropertyNames, PropertyTypes,
and GetPropertyValues() methods. The InitialPrice property now maps to two
columns, so you declare both in the mapping file. The first column stores the value;
the second stores the currency of the MonetaryAmount. Note that the order of columns
must match the order of properties in your type implementation:

<property name="InitialPrice"
type="NHibernate.Auction.CustomTypes.MonetaryAmountCompositeUserType,
NHibernate.Auction">
 <column name="INITIAL_PRICE"/>
 <column name="INITIAL_PRICE_CURRENCY"/>
</property>

In a query, you can now refer to the Amount and Currency properties of the custom
type, even though they don’t appear anywhere in the mapping document as individ-
ual properties:

from Item i
where i.InitialPrice.Value > 100.0
 and i.InitialPrice.Currency = 'XAF'

In this example, you’ve expanded the buffer between the .NET object model and the
SQL database schema with your custom composite type. Both representations can now
handle changes more robustly.

 If implementing custom types seems complex, relax; you’ll rarely need to use a cus-
tom mapping type. An alternative way to represent the MonetaryAmount class is to use
a component mapping, as in section 4.4.2. The decision to use a custom mapping type
is often a matter of taste.

 You can use a few more interfaces to implement custom types; they’re introduced
in the next section.
OTHER INTERFACES TO CREATE CUSTOM MAPPING TYPES

You may find that the interfaces IUserType and ICompositeUserType don’t let you
easily add more features to your custom types. In this case, you’ll need to use some of
the other interfaces that are in the NHibernate.UserTypes namespace: IParameter-
izedType, IEnhancedUserType, INullableUserType, and IUserCollectionType.

 The IParameterizedType interface allows you to supply parameters to your cus-
tom type in the mapping file. This interface has a unique method, SetParameter-
Values(IDictionary parameters), that’s called at the initialization of your type.
Here is an example of mapping providing a parameter:

<property name="Price">
 <type name="NHibernate.Auction.CustomTypes.MonetaryAmountUserType">
 <param name="DefaultCurrency">Euro</param>
 </type>
</property>

179Understanding the NHibernate type system
This mapping tells the custom type to use Euro as the currency if it isn’t specified.
 The IEnhancedUserType interface makes it possible to implement a custom type

that can be marshalled to and from its string representation. This functionality allows
this type to be used as an identifier or a discriminator type. To create a type that can
be used as version, you must implement the IUserVersionType interface.

 The INullableUserType interface lets you interpret non-null values in a property
as null in the database. When you use dynamic-insert or dynamic-update, fields
identified as null aren’t inserted or updated. This information may also be used when
generating the WHERE clause of the SQL command when optimistic locking is enabled.

 The last interface is different from the others because it’s meant to implement user-
defined collection types: IUserCollectionType. For more details, see the implementa-
tion NHibernate.Test.UserCollection.MyListType in the NHibernate source code.

 Now, let’s look at an extremely important application of custom mapping types.
Nullable types are found in almost all enterprise applications.
USING NULLABLE TYPES

With .NET 1.1, primitive types couldn’t be null; but this is no longer the case in .NET 2.0.
Let’s say you want to add a DismissDate to the class User. As long as a user is active, its
DismissDate should be null. But the System.DateTime struct can’t be null. And you
don’t want to use some magic value to represent the null state. With .NET 2.0 (and 3.5),
you can write

public class User
{
 //...
 private DateTime? dismissDate;
 public DateTime? DismissDate
 {
 get { return dismissDate; }
 set { dismissDate = value; }
 }
 //...
}

You omit other properties and methods because you focus on the nullable property.
No change is required in the mapping.

 If you work with .NET 1.1, the Nullables add-in (in the NHibernateContrib pack-
age for versions prior to NHibernate 1.2.0) contains a number of custom mapping
types that allow primitive types to be null. For the previous case, you can use the
Nullables.NullableDateTime class:

using Nullables;
[Class]
public class User {
 //...
 private NullableDateTime dismissDate;
 [Property]
 public NullableDateTime DismissDate

180 CHAPTER 6 Advanced mapping concepts
 {
 get { return dismissDate; }
 set { dismissDate = value; }
 }
 //...
}

The mapping is straightforward:

<class name="Example.Person, Example">
 ...
 <property name="DateOfBirth"
 type="Nullables.NHibernate.NullableDateTimeType,
 Nullables.NHibernate" />
</class>

It’s important to note that, in the mapping, the type of DismissDate must be Nullables.
NHibernate.NullableDateTimeType (from the file Nullables.NHibernate.dll). This
type is a wrapper used to translate Nullables types from/to database types. But when
you use the NHibernate.Mapping.Attributes library, this operation is automatic; that’s
why you put the attribute [Property].

 The NullableDateTime type behaves exactly like System.DateTime; there are even
implicit operators to easily interact with it. The Nullables library contains nullable
types for most .NET primitive types supported by NHibernate. You can find more
details in the NHibernate documentation.
USING ENUMERATED TYPES

An enumeration (enum) is a special form of value type, which inherits from System.
Enum and supplies alternate names for the values of an underlying primitive type.

 For example, the Comment class defines a Rating. If you recall, in the CaveatEmp-
tor application, users can give comments about other users. Instead of using a simple
int property for the rating, you create an enumeration:

public enum Rating {
 Excellent,
 Ok,
 Low
}

You then use this type for the Rating property of the Comment class. In the database,
ratings are represented as the type of the underlying value. In this case (and by
default), it’s Int32. And that’s all you have to do. You may specify type="Rating" in
your mapping, but it’s optional; NHibernate can use reflection to find this.

 One problem you may run into is using enumerations in NHibernate queries. Con-
sider the following query in HQL that retrieves all comments rated Low:

IQuery q =
 session.CreateQuery("from Comment c where c.Rating = Rating.Low");

This query doesn’t work, because NHibernate doesn’t know what to do with Rating.
Low and will try to use it as a literal. You have to use a bind parameter and set the

181Mapping collections of value types
rating value for the comparison dynamically (which is what you need for other rea-
sons most of the time):

IQuery q =
 session.CreateQuery("from Comment c where c.Rating = :rating");
q.SetParameter("rating",
 Rating.Low,
 NHibernateUtil.Enum(typeof(Rating));

The last line in this example uses the static helper method NHibernateUtil.Enum() to
define the NHibernate Type, a simple way to tell NHibernate about the enumeration
mapping and how to deal with the Rating.Low value.

 We’ve now discussed all kinds of NHibernate mapping types: built-in mapping
types, user-defined custom types, and even components (chapter 4). They’re all
considered value types, because they map objects of value type (not entities) to the
database. With a good understanding of what value types are and how they’re
mapped, we can now move on to the more complex issue of collections of value-
typed instances.

6.2 Mapping collections of value types
In chapter 4, we introduced using collections to represent entity relationships. We
explained how, for example, an Item can have a collection of Bids in the CaveatEmp-
tor application. Collections aren’t limited to entity types, and this section will focus on
how you create mappings where collections store instances of a value type. We start
this section by showing you how to use basic collections to contain simple value types,
such as a list of strings or DateTimes. We then move on to how you work with ordered
and sorted collections. Finally, we discuss how you can map collections of components,
along with the possible pitfalls and how they can be dealt with. You’ll see many hands-
on code samples along the way (please note that all the mappings in this section work
with both .NET 1.1 collections and .NET 2.0 generics).

6.2.1 Storing value types in sets, bags, lists, and maps

Suppose your sellers can attach images to Items. An image is accessible only via the
containing item; it doesn’t need to support associations to any other entity in your sys-
tem. In this case, it’s reasonable to model the image as a value type. Item has a collec-
tion of images that NHibernate considers to be part of the Item, without their own
persistence lifecycle. In this example scenario, let’s assume that images are stored as
files on the filesystem rather than as BLOBs in the database, and that you store file-
names in the database to record what images each Item has. We now walk through var-
ious ways this can be implemented using NHibernate, starting with the simplest
implementation: the set.
USING A SET

The simplest implementation is an ISet of string filenames. As a reminder, ISet is a
container that only disallows duplicate objects and is available in the Iesi.Collections

182 CHAPTER 6 Advanced mapping concepts
library. To store the images against the Item using an ISet, you add a collection property
to the Item class as follows:

using Iesi.Collections.Generic;
private ISet<string> images = new HashedSet<string>();
[Set(Lazy=true, Table="ITEM_IMAGE")]
[Key(1, Column="ITEM_ID")]
[Element(2, TypeType=typeof(string), Column="FILENAME", NotNull=true)]
public ISet<string> Images {
 get { return this.images; }
 set { this.images = value; }
}

Here is the corresponding XML mapping:

<set name="Images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <element type="String" column="FILENAME" not-null="true"/>
</set>

In the database, image file names are stored in a table called ITEM_IMAGE and linked
to their owner through ITEM_ID. From the database perspective, you have two entities.
But NHibernate hides this fact so you can present Images as merely a part of Item. The
<key> element declares the foreign key, ITEM_ID, of the parent entity. The <element>
tag declares this collection as a collection of value-type instances: in this case, of strings.

 As you may recall, a set can’t contain duplicate elements, so the primary key of
the ITEM_IMAGE table consists of both
columns in the <set> declaration: ITEM_ID
and FILENAME. See figure 6.3 for a table
schema example.

 It doesn’t seem likely that you would allow
the user to attach the same image more than
once, but suppose you did. What kind of
mapping would be appropriate then?
USING A BAG

An unordered collection that permits duplicate elements is called a bag. Curiously, the
.NET framework doesn’t define an IBag interface. NHibernate lets you use an IList in
.NET to simulate bag behavior; this is consistent with common usage in the .NET com-
munity. To use a bag, change the type of Images in Item from ISet to IList, probably
using ArrayList as an implementation.

 Changing the table definition from the previous section to permit duplicate FILE-
NAMEs requires a different primary key. You use an <idbag> mapping to attach a surro-
gate key column to the collection table, much like the synthetic identifiers you use for
entity classes:

[IdBag(Lazy=true, Table="ITEM_IMAGE")]
[CollectionId(1, TypeType=typeof(int), Column="ITEM_IMAGE_ID")]
[Generator(2, Class="sequence")]
[Key(3, Column="ITEM_ID")]

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage2.jpg
barimage1.jpg

Figure 6.3 Table structure and example data
for a collection of strings

183Mapping collections of value types
[Element(4, TypeType=typeof(string), Column="FILENAME", NotNull=true)]
public ISet Images { ... }

The XML mapping looks like this:

<idbag name="Images" lazy="true" table="ITEM_IMAGE">
 <collection-id type="Int32" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <element type="String" column="FILENAME" not-null="true"/>
</idbag>

In this case, the primary key is the generated ITEM_IMAGE_ID. You can see a graphical
view of the database tables in figure 6.4.

If you’re wondering why you use <idbag> rather than <bag>, bear in mind that we’ll
be discussing bags shortly. First, we’ll discuss another common approach to storing
images: in an ordered list.
USING A LIST

A <list> mapping requires the addition of an index column to the database table. The
index column defines the position of the element in the collection. Thus, NHibernate
can preserve the ordering of the collection elements when retrieving the collection
from the database if you map the collection as a <list>:

<list name="Images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <index column="POSITION"/>
 <element type="String" column="FILENAME" not-null="true"/>
</list>

The primary key consists of the ITEM_ID and POSITION columns. Notice that duplicate
elements (FILENAME) are allowed, which is consistent with the semantics of a list. (You
don’t have to change the Item class; the types you used earlier for the bag are the same.)

 Note that even though the IList contract doesn’t specify that a list is an ordered
collection, NHibernate’s implementation preserves the ordering when persisting the
collection.

 If the collection is [fooimage1.jpg, fooimage1.jpg, fooimage2.jpg], the POSI-
TION column contains the values 0, 1, and 2, as shown in figure 6.5.

 Alternatively, you could use a .NET array instead of a list. NHibernate supports this
usage, and the details of an array mapping are virtually identical to those of a list. But
we strongly recommend against the use of arrays, because arrays can’t be lazily initial-
ized (there is no way to proxy an array at the CLR level). Here is the mapping:

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage1.jpg
barimage1.jpg

ITEM_IMAGE_ID

1
2
3 Figure 6.4 Table structure using a

bag with a surrogate primary key

184 CHAPTER 6 Advanced mapping concepts
<primitive-array name="Images" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <index column="POSITION"/>
 <element type="String" column="FILENAME" not-null="true"/>
</primitive-array>

Now, suppose your images have user-entered names in addition to the filenames. One
way to model this in .NET would be to use a map, with names as keys and filenames as
values.
USING A MAP

Mapping a <map> (pardon us) is similar to mapping a list:

<map name="Images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="String" column="FILENAME" not-null="true"/>
</map>

The primary key consists of the ITEM_ID and IMAGE_NAME columns. The
IMAGE_NAME column stores the keys of the map. Again, duplicate elements are
allowed; see figure 6.6 for a graphical view of the tables.

This Map is unordered. What if you want to always sort your map by the name of the
image?
SORTED AND ORDERED COLLECTIONS

In a startling abuse of the English language, the words sorted and ordered mean differ-
ent things when it comes to NHibernate persistent collections. A sorted collection is
sorted in memory using a .NET IComparer. An ordered collection is ordered at the data-
base level using a SQL query with an order by clause.

 Let’s make the map of images a sorted map. This is a simple change to the map-
ping document:

<map name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="natural">

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
1

fooimage1.jpg
fooimage1.jpg
fooimage2.jpg

POSITION

0
1
2 Figure 6.5 Tables for a list

with positional elements

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
1

fooimage1.jpg
fooimage1.jpg
fooimage2.jpg

IMAGE_NAME

Foo Image 1
Foo Image One
Foo Image 2 Figure 6.6 Tables for a map, using

strings as indexes and elements

185Mapping collections of value types
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="String" column="FILENAME" not-null="true"/>
</map>

By specifying sort="natural", you tell NHibernate to use a SortedMap, sorting the
image names according to the CompareTo() method of System.String. If you want
some other sorted order—for example, reverse alphabetical order—you can specify
the name of a class that implements System.Collections.IComparer in the sort
attribute. Here’s an example:

<map name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="NHibernate.Auction.ReverseStringComparer, NHibernate.Auction">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="String" column="FILENAME" not-null="true"/>
</map>

NHibernate sorted maps use System.Collections.SortedList in their implementa-
tion. A sorted set, which behaves like Iesi.Collections.SortedSet, is mapped in a
similar way:

<set name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="natural">
 <key column="ITEM_ID"/>
 <element type="String" column="FILENAME" not-null="true"/>
</set>

Bags can’t be sorted, and there is no SortedBag, unfortunately. Nor may lists be
sorted, because the order of list elements is defined by the list index.

 Alternatively, you may choose to use an ordered map, using the sorting capabilities
of the database instead of in-memory sorting:

<map name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="String"/>
 <element type="String" column="FILENAME" not-null="true"/>
</map>

The expression in the order-by attribute is a fragment of a SQL order by clause. In
this case, you order by the IMAGE_NAME column, in ascending order. You can even
write SQL function calls in the order-by attribute:

<map name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="lower(FILENAME) asc">

186 CHAPTER 6 Advanced mapping concepts
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="String"/>
 <element type="String" column="FILENAME" not-null="true"/>
</map>

Notice that you can order by any column of the collection table. Both sets and bags
accept the order-by attribute; but again, lists don’t. This example uses a bag:

<idbag name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="ITEM_IMAGE_ID desc">
 <collection-id type="Int32" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <element type="String" column="FILENAME" not-null="true"/>
</idbag>

Under the covers, NHibernate uses an Iesi.Collections.ListSet and a System.
Collections.Specialized.ListDictionary to implement ordered sets and maps;
use this functionality carefully because it doesn’t perform well with large numbers
of elements.

 In a real system, it’s likely that you’ll need to keep more than just the image name
and filename; you’l probably need to create an Image class to store this extra informa-
tion. Of course, you could map Image as an entity class; but because we’ve already con-
cluded that this isn’t absolutely necessary, let’s see how much further you can get
without an Image entity, which would require an association mapping and more com-
plex lifecycle handling.

 In chapter 3, you saw that NHibernate lets you map user-defined classes as compo-
nents, which are considered to be value types. This is still true, even when component
instances are collection elements. Let’s now look at how you can map collections
of components.

6.2.2 Collections of components

The Image class defines the properties Name, Filename, SizeX, and SizeY. It has a sin-
gle association, with its parent Item class, as shown in figure 6.7.

 As you can see from the aggregation asso-
ciation style depicted by a black diamond,
Image is a component of Item, and Item is
the entity that is responsible for the lifecycle
of Image. References to images aren’t
shared, so our first choice is an NHibernate
component mapping. The multiplicity of the
association further declares this association
as many-valued—that is, zero or more Images
for the same Item.

Name : string
Description : string
InitialPrice : double
ReservePrice : double
StartDate : DateTime
EndDate : DateTime
Created : DateTime

Name : string
Filename : string
SizeX : int
SizeY : int

Figure 6.7 Collection of
Image components in Item

187Mapping collections of value types
WRITING THE COMPONENT CLASS

First, you implement the Image class. This is a POCO, with nothing special to consider.
As you know from chapter 4, component classes don’t have an identifier property. But
you must implement Equals() and GetHashCode() to compare the Name, Filename,
SizeX, and SizeY properties. This allows NHibernate’s dirty checking to function cor-
rectly. Strictly speaking, implementing Equals() and GetHashCode() isn’t required
for all component classes; but we recommend it for any component class because the
implementation is fairly easy, and “better safe than sorry” is a good motto.

 The Item class hasn’t changed, but the objects in the collection are now Images
instead of Strings. Let’s map this to the database.
MAPPING THE COLLECTION

Collections of components are mapped similarly to other collections of value type
instances. The only difference is the use of <composite-element> in place of the
familiar <element> tag. An ordered set of images can be mapped like this:

<set name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <composite-element class="Namespaces.Image, Assembly">
 <property name="Name" column="IMAGE_NAME" not-null="true"/>
 <property name="Filename" column="FILENAME" not-null="true"/>
 <property name="SizeX" column="SIZEX" not-null="true"/>
 <property name="SizeY" column="SIZEY" not-null="true"/>
 </composite-element>
</set>

This is a set of value-type instances, so NHibernate must be able to tell the instances
apart despite the fact that they have no separate primary key column. To do this, all
columns of the composite are used together to determine if an item is unique:
ITEM_ID, IMAGE_NAME, FILENAME, SIZEX, and SIZEY. Because these columns will all
appear in a composite primary key, they can’t be null. This is clearly a disadvantage of
this particular mapping. Composite elements in a set are sometimes useful, but using
a list, bag, map, or idbag lets you get around the not-null restriction.
BIDIRECTIONAL NAVIGATION

So far, the association from Item to Image is unidirectional. If you decide to make it bidi-
rectional, you’ll give the Image class a property named Item that is a reference back to
the owning Item. In the mapping file, you need to add a <parent> tag to the mapping:

<set name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <composite-element class="Image">
 <parent name="Item"/>
 <property name="Name" column="IMAGE_NAME" not-null="true"/>
 <property name="Filename" column="FILENAME" not-null="true"/>

188 CHAPTER 6 Advanced mapping concepts
 <property name="SizeX" column="SIZEX" not-null="true"/>
 <property name="SizeY" column="SIZEY" not-null="true"/>
 </composite-element>
</set>

This leads to a potential problem: you’ll be able to load Image instances by querying
for them, but the reference to their parent property will be null. The best thing to do
is always load the parent in order to access its component parts, or use a full parent/
child entity association, as described in chapter 4.

 You still have the issue of having to declare all properties as not-null, and it would
be nice if you could avoid this. Let’s look at how you can use a better primary key for
the IMAGE table.
AVOIDING NOT-NULL COLUMNS

If a set of Images isn’t the only solution, other more flexible collection styles are possi-
ble. For example, an idbag offers a surrogate collection key:

<idbag name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <collection-id type="Int32" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <composite-element class="Namespaces.Image, Assembly">
 <property name="Name" column="IMAGE_NAME"/>
 <property name="Filename" column="FILENAME" not-null="true"/>
 <property name="SizeX" column="SIZEX"/>
 <property name="SizeY" column="SIZEY"/>
 </composite-element>
</idbag>

This time, the primary key is the ITEM_IMAGE_ID column. NHibernate now doesn’t
require that you must implement Equals() and GetHashCode(), nor do you need to
declare the properties with not-null="true". They may be nullable in the case of an
idbag, as shown in figure 6.8.

 We should point out that there isn’t a great deal of difference between this bag
mapping and a standard parent/child entity relationship. The tables are identical,
and even the C# code is extremely similar; the choice is mainly a matter of taste. Of
course, a parent/child relationship supports shared references to the child entity and
true bidirectional navigation.

 You can even remove the Name property from the Image class and again use the
image name as the key of a map:

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage1.jpg
barimage1.jpg

ITEM_IMAGE_ID

1
2
3

IMAGE_NAME

Foo Image 1
Foo Image 1
Bar Image 1

Figure 6.8 Collection of Image
components using a bag with a
surrogate key

189Mapping entity associations
<map name="Images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <index type="String" column="IMAGE_NAME"/>
 <composite-element class="Image">
 <property name="Filename" column="FILENAME" not-null="true"/>
 <property name="SizeX" column="SIZEX"/>
 <property name="SizeY" column="SIZEY"/>
 </composite-element>
</map>

As before, the primary key is composed of ITEM_ID and IMAGE_NAME.
 A composite element class like Image isn’t limited to simple properties of basic

type like filename. It may contain components, using the <nested-composite-
element> declaration, and even <many-to-one> associations to entities. It may not own
collections. A composite element with a many-to-one association is useful, and we
come back to this kind of mapping later in this chapter.

 We’re finally finished with value types, and we hope you have an in-depth under-
standing of what is possible and where you can be able to make use of them. Next, we
look at advanced entity-association mapping techniques. The simple parent/child
association you mapped in chapter 3 is just one of many possible association mapping
styles. Like the previous mappings we discussed, most of these mappings are consid-
ered “exotic” and are needed only in special cases. But having an awareness of the
available techniques will help you solve the thornier mapping challenges you encoun-
ter in the wild.

6.3 Mapping entity associations
When we use the word associations, we’re always referring to relationships between
entities. In chapter 4, we demonstrated a unidirectional many-to-one association,
made it bidirectional, and finally turned it into a parent/child relationship (one-to-
many and many-to-one).

 One-to-many associations are the most important and popular type. We go so far as
to discourage the use of more exotic association styles when a simple bidirectional
many-to-one/one-to-many will do the job. In particular, a many-to-many association
may always be represented as two many-to-one associations to an intervening class.
This model is usually much more extensible, and you’ll rarely use a many-to-many
mapping in your applications.

 Armed with this disclaimer, let’s investigate NHibernate’s rich association map-
pings, starting with one-to-one associations.

6.3.1 One-to-one associations

We argued in chapter 4 that the relationships between User and Address were best
represented using <component> mappings. If you recall, the user has both a Billing-
Address and a HomeAddress in the sample model. Component mappings are usually

190 CHAPTER 6 Advanced mapping concepts
the simplest way to represent one-to-one relationships, because the lifecycle of one
class is almost always dependent on the lifecycle of the other class, and the association
is a composition.

 But what if you want a dedicated table for Address and to map both User and
Address as entities? In this case, the classes have a true one-to-one association.
Because an Address is an entity, you start by creating the following mapping:

<class name="Address" table="ADDRESS" lazy="false">
 <id name="Id" column="ADDRESS_ID">
 <generator class="native"/>
 </id>
 <property name="Street"/>
 <property name="City"/>
 <property name="Zipcode"/>
</class>

Note that Address now requires an identifier property; it’s no longer a component
class. There are two different ways to represent a one-to-one association to this Address
in NHibernate. The first approach adds a foreign key column to the USER table.
USING A FOREIGN KEY ASSOCIATION

The easiest way to represent the association from User to its BillingAddress is to use
a <many-to-one> mapping with a unique constraint on the foreign key. This may sur-
prise you, because many doesn’t seem to be a good description of either end of a one-
to-one association! But from NHibernate’s point of view, there isn’t much difference
between the two kinds of foreign-key associations. You add a foreign key column
named BILLING_ADDRESS_ID to the USER table and map it as follows:

<many-to-one name="BillingAddress"
 class="Address"
 column="BILLING_ADDRESS_ID"
 cascade="save-update"/>

Note that we’ve chosen save-update as the cascade style. This means the Address
will become persistent when you create an association from a persistent User. The
cascade="all" cascade would also make sense for this association, because deletion
of the User should result in deletion of the Address.

 The database schema still allows duplicate values in the BILLING_ADDRESS_ID col-
umn of the USER table, so two users can have a reference to the same address. To make
this association truly one-to-one, you add unique="true" to the <many-to-one> ele-
ment, constraining the relational model so that there can be only one address per user:

<many-to-one name="BillingAddress"
 class="Address"
 column="BILLING_ADDRESS_ID"
 cascade="all"
 unique="true"/>

This change adds a unique constraint to the BILLING_ADDRESS_ID column in the DDL
generated by NHibernate, resulting in the table structure illustrated in figure 6.9.

191Mapping entity associations
But what if you want this association to be navigable from Address to User in .NET? To
achieve this, you add a property named User that points to the Address class, and map
it like so in your Address mapping:

<one-to-one name="User"
 class="User"
 property-ref="BillingAddress"/>

This tells NHibernate that the User association in Address is the reverse direction of
the BillingAddress association in User.

 In code, you create the association between the two objects as follows:

Address address = new Address();
address.Street = "73 Nowhere Street";
address.City = "Pretoria";
address.Zipcode = "1923";
using(session.BeginTransaction()) {
 User user = (User) session.Get(typeof(User), userId);
 address.User = user;
 user.BillingAddress = address;
 session.Transaction.Commit();
}

To finish the mapping, you also have to map the HomeAddress property of User. This is
easy enough; you add another <many-to-one> element to the User metadata, map-
ping a new foreign key column, HOME_ADDRESS_ID:

<many-to-one name="HomeAddress"
 class="Address"
 column="HOME_ADDRESS_ID"
 cascade="save-update"
 unique="true"/>

The USER table now defines two foreign keys referencing the primary key of the
ADDRESS table: HOME_ADDRESS_ID and BILLING_ADDRESS_ID.

 Unfortunately, you can’t make both the BillingAddress and HomeAddress associa-
tions bidirectional, because you don’t know if a particular address is a billing address
or a home address. More specifically, you’d have to somehow dynamically decide
which property name—BillingAddress or HomeAddress—to use for the property-
ref attribute in the mapping of the user property. You could try making Address an

<<Table>>

Address
ADDRESS_ID <<PK>>

STREET

ZIPCODE

CITY

<<Table>>

User
USER_ID <<PK>>

BILLING_ADDRESS_ID <<FK>>

FIRSTNAME

LASTNAME

USERNAME

PASSWORD

EMAIL

RANKING

CREATED Figure 6.9 A one-to-one association with an extra foreign-key column

192 CHAPTER 6 Advanced mapping concepts
abstract class with subclasses HomeAddress and BillingAddress and mapping the
associations to the subclasses. This approach would work, but it’s complex and proba-
bly not sensible in this case.

 Our advice is to avoid defining more than one one-to-one association between any
two classes. If you must, leave the associations unidirectional. If you don’t have more
than one—if exactly one instance of Address exists per User—there is an alternative
approach to the one we’ve just shown. Instead of defining a foreign-key column in the
USER table, you can use a primary-key association.
USING A PRIMARY-KEY ASSOCIATION

Two tables related by a primary-key association share the same primary-key values. The
primary key of one table is also a foreign key of the other. The main difficulty with this
approach is ensuring that associated instances are assigned the same primary-key
value when the objects are saved. Before you try to solve this problem, let’s see how
you map the primary-key association.

 For a primary-key association, both ends of the association are mapped using the
<one-to-one> declaration. This also means you can no longer map both the billing
and home address—you can map only one property. Each row in the USER table has a
corresponding row in the ADDRESS table. Two addresses would require an additional
table, and this mapping style therefore wouldn’t be adequate. Let’s call this single
address property Address and map it with the User:

<one-to-one name="Address"
 class="Address"
 cascade="save-update"/>

Next, here’s the User of Address:

<one-to-one name="User"
 class="User"
 constrained="true"/>

The most interesting thing here is the use of constrained="true". It tells NHibernate
that there is a foreign-key constraint on the primary key of ADDRESS that refers to the
primary key of USER.

 Now, you must ensure that newly saved instances of Address are assigned the same
identifier value as their User. You use a special NHibernate identifier-generation strat-
egy called foreign:

<class name="Address" table="ADDRESS" lazy="false">
 <id name="Id" column="ADDRESS_ID">
 <generator class="foreign">
 <param name="property">User</param>
 </generator>
 </id>
 ...
 <one-to-one name="User"
 class="User"
 constrained="true"/>
</class>

193Mapping entity associations
The <param> named property of the
foreign generator allows you to name a
one-to-one association of the Address
class—in this case, the user association.
The foreign generator inspects the
associated object (the User) and uses its
identifier as the identifier of the new
Address. Look at the table structure in
figure 6.10.

 The code to create the object associ-
ation is unchanged for a primary-key
association; it’s the same code you used earlier for the many-to-one mapping style.

 Just one remaining entity association multiplicity remains for us to discuss: many-
to-many.

6.3.2 Many-to-many associations

The association between Category and
Item is a many-to-many association, as
you can see in figure 6.11.

 As we explained earlier in this sec-
tion, we avoid the use of many-to-many
associations because there is almost
always other information that must be
attached to the links between associated
instances; the best way to represent this
information is via an intermediate association class. Nevertheless, it’s the purpose of
this section to implement a real many-to-many entity association. Let’s start with a uni-
directional example.
A UNIDIRECTIONAL MANY-TO-MANY ASSOCIATION

If you only require unidirectional navigation, the mapping is straightforward. Unidi-
rectional many-to-many associations are no more difficult than the collections of
value-type instances we covered previously. For example, if the Category has a set of
Items, you can use this mapping:

<set name="Items"
 table="CATEGORY_ITEM"
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</set>

Just like a collection of value-type instances, a many-to-many association has its own
table: the link table or association table. In this case, the link table has two columns:
the foreign keys of the CATEGORY and ITEM tables. The primary key is composed of
both columns. The full table structure is shown in figure 6.12.

<<Table>>

Address
ADDRESS_ID <<PK>> <<FK>>

STREET

ZIPCODE

CITY

<<Table>>

User
USER_ID <<PK>>

FIRSTNAME

LASTNAME

USERNAME

PASSWORD

EMAIL

RANKING

CREATED

Figure 6.10 The tables for a one-to-one
association with shared primary-key values

Name : string
Description : string
InitialPrice : double
ReservePrice : double
StartDate : DateTime
EndDate : DateTime
Created : DateTime

Name : string

Figure 6.11 A many-to-many valued association
between Category and Item

194 CHAPTER 6 Advanced mapping concepts
You can also use a bag with a separate primary-key column:

<idbag name="Items"
 table="CATEGORY_ITEM”
 lazy="true"
 cascade="save-update">
 <collection-id type="Int32" column="CATEGORY_ITEM_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</idbag>

As usual with an <idbag> mapping, the primary key is a surrogate key column,
CATEGORY_ITEM_ID; duplicate links are therefore allowed (the same Item can be
added to a particular Category twice).

 Other variations you can use are the indexed map and list collections. The follow-
ing example uses a list:

<list name="Items"
 table="CATEGORY_ITEM”
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <index column="DISPLAY_POSITION"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</list>

The primary key consists of the CATEGORY_ID and DISPLAY_POSITION columns. This
mapping guarantees that every Item knows its position in the Category.

 Creating an object association in .NET code is easy:

using(session.BeginTransaction()) {
 Category cat = (Category) session.Get(typeof(Category), categoryId);
 Item item = (Item) session.Get(typeof(Item), itemId);
 cat.Items.Add(item);
 session.Transaction.Commit();
}

Bidirectional many-to-many associations are slightly more difficult.

<<Table>>

CATEGORY

CATEGORY_ID <<PK>>

PARENT_CATEGORY_ID <<FK>>

NAME

CREATED

<<Table>>

ITEM

ITEM_ID <<PK>>

NAME

DESCRIPTION

INITIAL_PRICE

...

<<Table>>

CATEGORY_ITEM

CATEGORY_ID <<PK>> <<FK>>

ITEM_ID <<PK>> <<FK>>

Figure 6.12 Many-to-many
entity association mapped
to an association table

195Mapping entity associations
A BIDIRECTIONAL MANY-TO-MANY ASSOCIATION

When you mapped a bidirectional one-to-many association in section 3.6, we
explained why one end of the association must be mapped with inverse="true". Feel
free to review that section, because it’s relevant for bidirectional many-to-many associ-
ations too. In particular, each row of the link table is represented by two collection ele-
ments: one element at each end of the association. For example, you may create an
Item class with a collection of Category instances, and a Category class with a collec-
tion of Item instances. When it comes to creating relationships in .NET code, it may
look something like this:

cat.Items.Add(item);
item.Categories.Add(cat);

Regardless of multiplicity, a bidirectional association requires that you set both ends
of the association.

 When you map a bidirectional many-to-many association, you must declare one
end of the association using inverse="true" to define which side’s state is used to
update the link table. You can choose for yourself which end that should be.

 Recall this mapping for the Items collection from the previous section:

<class name="Category" table="CATEGORY">
 ...
 <set name="Items"
 table="CATEGORY_ITEM"
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
 </set>
</class>

You can reuse this mapping for the Category end of the bidirectional association. You
map the Item end as follows:

<class name="Item" table="ITEM">
 ...
 <set name="Categories"
 table="CATEGORY_ITEM"
 lazy="true"
 inverse="true"
 cascade="save-update">
 <key column="ITEM_ID"/>
 <many-to-many class="Category" column="CATEGORY_ID"/>
 </set>
</class>

Note the use of inverse="true". Once again, this setting tells NHibernate to ignore
changes made to the categories collection and use the other end of the associa-
tion—the items collection—as the representation that should be synchronized with
the database.

 We’ve chosen cascade="save-update" for both ends of the collection, which suits
your needs well. Note that cascade="all", cascade="delete", and cascade=

196 CHAPTER 6 Advanced mapping concepts
"all-delete-orphans" aren’t meaningful for many-to-many associations, because an
instance with potentially many parents shouldn’t be deleted when just one parent
is deleted.

 Another thing to consider is the kinds of collections that may be used for bidirec-
tional many-to-many associations. Do you need to use the same type of collection at
each end? It’s reasonable to use, for example, a list at the end not marked inverse
="true" (or explicitly set false) and a bag at the end marked inverse="true".

 You can use any of the mappings we’ve shown for unidirectional many-to-many asso-
ciations for the noninverse end of the bidirectional association. <set>, <idbag>, <list>,
and <map> are all possible, and the mappings are identical to those shown previously.

 For the inverse end, <set> is acceptable, as is the following bag mapping:

<class name="Item" table="ITEM">
 ...
 <bag name="Categories"
 table="CATEGORY_ITEM”
 lazy="true"
 inverse="true" cascade="save-update">
 <key column="ITEM_ID"/>
 <many-to-many class="Category" column="CATEGORY_ID"/>
 </bag>
</class>

This is the first time we’ve shown the <bag> declaration: it’s similar to an <idbag>
mapping, but it doesn’t involve a surrogate-key column. It lets you use an IList (with
bag semantics) in a persistent class instead of an ISet. Thus it’s preferred if the nonin-
verse side of a many-to-many association mapping is using a map, list, or bag (which all
permit duplicates). Remember that a bag doesn’t preserve the order of elements.

 No other mappings should be used for the inverse end of a many-to-many associa-
tion. Indexed collections such as lists and maps can’t be used, because NHibernate
won’t initialize or maintain the index column if inverse="true". This is also true and
important to remember for all other association mappings involving collections: an
indexed collection, or even arrays, can’t be set to inverse="true".

 We already frowned at the use of a many-to-many association and suggested the use
of composite element mappings as an alternative. Let’s see how this works.
USING A COLLECTION OF COMPONENTS FOR A MANY-TO-MANY ASSOCIATION

Suppose you need to record some information each time you add an Item to a Category.
For example, you may need to store the date and the name of the user who added the
item to this category. You use a C# class to represent this information:

public class CategorizedItem {
 private string username;
 private DateTime dateAdded;
 private Item item;
 private Category category;
 //...
}

197Mapping entity associations
This code omits the properties and Equals() and GetHashCode() methods, but they
would be necessary for this component class.

 You map the Items collection on Category as shown next. If you prefer using map-
ping attributes in your code, you should be able to easily deduce the mapping using
attributes; just be careful when ordering them:

<set name="Items" lazy="true" table="CATEGORY_ITEMS">
 <key column="CATEGORY_ID"/>
 <composite-element class="CategorizedItem">
 <parent name="Category"/>
 <many-to-one name="Item"
 class="Item"
 column="ITEM_ID"
 not-null="true"/>
 <property name="Username" column="USERNAME" not-null="true"/>
 <property name="DateAdded" column="DATE_ADDED" not-null="true"/>
 </composite-element>
</set>

You use the <many-to-one> element to declare the association to Item, and you use the
<property> mappings to declare the extra association-related information. The link
table now has four columns: CATEGORY_ID, ITEM_ID, USERNAME and DATE_ADDED.
The columns of the CategorizedItem properties should never be null; otherwise you
can’t identify a single link entry, because they’re all part of the table’s primary key. You
can see the table structure in figure 6.13.

Rather than mapping just the Username, you may want to keep an actual reference to
the User object. In this case, you have the following ternary association mapping:

<set name="Items" lazy="true" table="CATEGORY_ITEMS">
 <key column="CATEGORY_ID"/>
 <composite-element class="CategorizedItem">
 <parent name="Category"/>
 <many-to-one name="Item"
 class="Item"

<<Table>>

CATEGORY

CATEGORY_ID <<PK>>

PARENT_CATEGORY_ID <<FK>>

NAME

CREATED

<<Table>>

ITEM

ITEM_ID <<PK>>

NAME

DESCRIPTION

INITIAL_PRICE

...

<<Table>>

CATEGORY_ITEM

CATEGORY_ID <<PK>> <<FK>>

ITEM_ID <<PK>> <<FK>>

USERNAME <<PK>>

DATE_ADDED <<PK>>

Figure 6.13 Many-to-many
entity association table
using a component

198 CHAPTER 6 Advanced mapping concepts
 column="ITEM_ID"
 not-null="true"/>
 <many-to-one name="User"
 class="User"
 column="USER_ID"
 not-null="true"/>
 <property name="DateAdded" column="DATE_ADDED" not-null="true"/>
 </composite-element>
</set>

This is a fairly exotic beast! If you find yourself with a mapping like this, you should
ask whether it may be better to map CategorizedItem as an entity class and use two
one-to-many associations. Furthermore, there is no way to make this mapping bidirec-
tional: a component, such as CategorizedItem can’t, by definition, have shared refer-
ences. You can’t navigate from Item to CategorizedItem.

 We talked about some limitations of many-to-many mappings in the previous sec-
tion. One of them, the restriction to nonindexed collections for the inverse end of an
association, also applies to one-to-many associations, if they’re bidirectional. Let’s take
a closer look at one-to-many and many-to-one again, to refresh your memory and elab-
orate on what we discussed in chapter 4.
ONE-TO-MANY ASSOCIATIONS

You already know most of what you need to know about one-to-many associations from
chapter 3. You mapped a typical parent/child relationship between two entity persis-
tent classes, Item and Bid. This was a bidirectional association, using a <one-to-many>
and a <many-to-one> mapping. The “many” end of this association was implemented
in C# with an ISet; you had a collection of Bids in the Item class. Let’s reconsider this
mapping and walk through some special cases.
USING A BAG WITH SET SEMANTICS

For example, if you absolutely need an IList of children in your parent C# class, it’s
possible to use a <bag> mapping in place of a set. In the example, first you have to
replace the type of the Bids collection in the Item persistent class with an IList. The
mapping for the association between Item and Bid is then left essentially unchanged:

<class
 name="Bid"
 table="BID">
 ...
 <many-to-one
 name="Item"
 column="ITEM_ID"
 class="Item"
 not-null="true"/>
</class>
<class
 name="Item"
 table="ITEM">
 ...
 <bag
 name="Bids"

199Mapping entity associations
 inverse="true"
 cascade="all-delete-orphan">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </bag>
</class>

You rename the <set> element to <bag>, making no other changes. Note that this
change isn’t useful: the underlying table structure doesn’t support duplicates, so the
<bag> mapping results in an association with set semantics. Some tastes prefer the use
of ILists even for associations with set semantics, but ours doesn’t, so we recommend
using <set> mappings for typical parent/child relationships.

 The obvious (but wrong) solution would be to use a real <list> mapping for the
Bids with an additional column holding the position of the elements. Remember the
NHibernate limitation we introduced earlier in this chapter: you can’t use indexed
collections on an inverse side of an association. The inverse="true" side of the asso-
ciation isn’t considered when NHibernate saves the object state, so NHibernate
ignores the index of the elements and doesn’t update the position column.

 But if your parent/child relationship is unidirectional only where navigation is
possible only from parent to child, you can use an indexed collection type because the
“many” end is no longer inverse. Good uses for unidirectional one-to-many associa-
tions are uncommon in practice, and you don’t have one in the auction application.
You may remember that you started with the Item and Bid mapping in chapter 4, mak-
ing it first unidirectional, but you quickly introduced the other side of the mapping.

 Let’s find a different example to implement a unidirectional one-to-many associa-
tion with an indexed collection.
UNIDIRECTIONAL MAPPING

For the purposes of this discussion, we now suppose that the association between
Category and Item is to be remodeled as a one-to-many association; an Item now
belongs to at most one category and doesn’t own a reference to its current category.
In C# code, you model this as a collection named Items in the Category class; you
don’t have to change anything if you don’t use an indexed collection. If Items is
implemented as an ISet, you use the following mapping:

<set name="Items" lazy="true">
 <key column="CATEGORY_ID"/>
 <one-to-many class="Item"/>
</set>

Remember that one-to-many association mappings don’t need to declare a table
name. NHibernate already knows that the column names in the collection mapping
(in this case, only CATEGORY_ID) belong to the ITEM table. The table structure is
shown in figure 6.14.

 The other side of the association, the Item class, has no mapping reference to
Category. You can now also use an indexed collection in the Category—for example,
after you change the Items property to List:

200 CHAPTER 6 Advanced mapping concepts
<list name="Items" lazy="true">
 <key>
 <column name="CATEGORY_ID" not-null="false"/>
 </key>
 <index column="DISPLAY_POSITION/>
 <one-to-many class="Item"/>
</list>

Note the new DISPLAY_POSITION column in the ITEM table, which holds the position
of the Item elements in the collection.

 There is an important issue to consider, which, in our experience, puzzles many
NHibernate users at first. In a unidirectional one-to-many association, the foreign-key
column CATEGORY_ID in the ITEM table must be nullable. An Item could be saved
without knowing anything about a Category—it’s a standalone entity! This is a consis-
tent model and mapping, and you may have to think about it twice if you deal with a
not-null foreign key and a parent/child relationship. Using a bidirectional associa-
tion (and a Set) is the correct solution.

 Now that you know about all the association mapping techniques for normal enti-
ties, you may want to consider inheritance; how do all these associations work between
various levels of an inheritance hierarchy? What you want is polymorphic behavior;
let’s see how NHibernate deals with polymorphic entity associations.

6.4 Mapping polymorphic associations
Polymorphism is a defining feature of object-oriented languages like C#. Therefore,
support for polymorphic associations and queries is a fundamental requirement of an
ORM solution like NHibernate. Surprisingly, we’ve managed to get this far without
needing to talk much about polymorphism. Even more surprisingly, there isn’t much
to say on the topic—polymorphism is so easy to use in NHibernate that we don’t need
to spend a lot of effort explaining this feature.

 To give you a good overview of how polymorphic associations are used, we first
consider a many-to-one association to a class that may have subclasses. In this case,
NHibernate guarantees that you can create links to any subclass instance just as you
would to instances of the base class. Following that, we guide you through setting up
polymorphic collections and then explain the particular issues with the “table per
concrete class” mapping.

<<Table>>

CATEGORY

CATEGORY_ID <<PK>>

PARENT_CATEGORY_ID <<FK>>

NAME

CREATED

<<Table>>

ITEM

ITEM_ID <<PK>>

CATEGORY_ID <<FK>>

NAME

DESCRIPTION

INITIAL_PRICE

...

Figure 6.14 A standard
one-to-many association
using a foreign-key column

201Mapping polymorphic associations
6.4.1 Polymorphic many-to-one associations

A polymorphic association is an association that may refer to instances of a subclass,
where the parent class was explicitly specified in the mapping metadata. For this
example, imagine that you don’t have many BillingDetails per User, but only one,
as shown in figure 6.15.

 The user needs a unidirectional association to some BillingDetails, which can
be CreditCard details or BankAccount details. You map this association to the abstract
class BillingDetails as follows:

<many-to-one name="BillingDetails"
 class="BillingDetails"
 column="BILLING_DETAILS_ID"
 cascade="save-update"/>

But because BillingDetails is abstract, the association must refer to an instance of
one of its subclasses—CreditCard or BankAccount—at runtime.

 All the association mappings we’ve introduced so far in this chapter support poly-
morphism. You don’t have to do anything special to use polymorphic associations in
NHibernate—you specify the name of any mapped persistent class in your association
mapping. Then, if that class declares any <subclass> or <joined-subclass> ele-
ments, the association is naturally polymorphic.

 The following code demonstrates the creation of an association to an instance of
the CreditCard subclass:

CreditCard cc = new CreditCard();
cc.Number = ccNumber;
cc.Type = ccType;
cc.ExpiryDate = ccExpiryDate;
using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 User user = (User) session.Get(typeof(User), uid);
 user.BillingDetails = cc;
 session.Transaction.Commit();
}

Now, when you navigate the association in a second transaction, NHibernate automat-
ically retrieves the CreditCard instance:

CreditCard BankAccount

BillingDetailsUser

Firstname : string
Lastname : string
Username : string
Password : string
Email : string
Ranking : int
Created : DateTime

Owner : string
Number : string
Created : DateTime

Type : int
ExpMonth : string
ExpYear : string

BankName : string
BankSwift : string Figure 6.15 The user has only

one billing information object.

202 CHAPTER 6 Advanced mapping concepts
using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 User user = (User) session.Get(typeof(User), uid);
 user.BillingDetails.Pay(paymentAmount);
 session.Transaction.Commit();
}

Note that, in user.BillingDetails.Pay(paymentAmount), the call is against the
appropriate subclass.

 You must watch out for one thing: if BillingDetails was mapped with
lazy="true", NHibernate would proxy the BillingDetails association. In this case,
you wouldn’t be able to perform a typecast to the concrete class CreditCard at run-
time, and even the is operator would behave strangely:

User user = (User) session.Get(typeof(User), uid);
BillingDetails bd = user.BillingDetails;
Assert.IsFalse(bd is CreditCard);
CreditCard cc = (CreditCard) bd;

In this code, the typecast on the last line fails because bd is a proxy instance, and when
creating it, NHibernate doesn’t know yet that bd is a CreditCard; all it knows is that bd
is a BillingDetails. When a method is invoked on the proxy, the call is delegated to
an instance of CreditCard that is fetched lazily. To perform a proxy-safe typecast, use
Session.Load():

User user = (User) session.Get(typeof(User), uid);
BillingDetails bd = user.BillingDetails;
CreditCard cc =
 (CreditCard) session.Load(typeof(CreditCard), bd.Id);
expiryDate = cc.ExpiryDate;

After the call to load, bd and cc refer to two different proxy instances, which both del-
egate to the same underlying CreditCard instance. Also, because proxy instances were
created, no database hit has been incurred yet.

 Note that you can avoid these issues by avoiding lazy fetching, as in the following
code, using a query technique discussed in the next chapter:

User user = (User) session.CreateCriteria(typeof(User))
 .Add(Expression.Expression.Eq("id", uid))
 .SetFetchMode("BillingDetails", FetchMode.Eager)
 .UniqueResult();
CreditCard cc = (CreditCard) user.BillingDetails;
expiryDate = cc.ExpiryDate;

BillingDetails is fetched eagerly in this case, avoiding the lazy load. Truly object-
oriented code shouldn’t use is or numerous typecasts. If you find yourself running
into problems with proxies, you should question your design, asking whether there is
a more polymorphic approach.

 One-to-one associations are handled the same way. What about many-valued
associations?

203Mapping polymorphic associations
6.4.2 Polymorphic collections

Let’s refactor the previous example to its original form, as introduced in the Cave-
atEmptor application. If User owns many BillingDetails, you use a bidirectional
one-to-many. In BillingDetails, you have the following:

<many-to-one name="User"
 class="User"
 column="USER_ID"/>

In the Users mapping, you have this:

<set name="BillingDetails"
 lazy="true"
 cascade="save-update"
 inverse="true">
 <key column="USER_ID"/>
 <one-to-many class="BillingDetails"/>
</set>

Adding a CreditCard is easy:

CreditCard cc = new CreditCard();
cc.Number = ccNumber;
cc.Type = ccType;
cc.ExpiryDate = ccExpiryDate;
using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 User user = (User) session.Get(typeof(User), uid);
 user.AddBillingDetails(cc);
 session.Transaction.Commit();
}

As usual, the user.AddBillingDetails(cc) function ensures that the association is
set at both ends by calling BillingDetails.Add(cc) and cc.User=this.

 You can iterate over the collection and handle instances of CreditCard and
BankAccount:

using(ISession session = sessionFactory.OpenSession())
using(session.BeginTransaction()) {
 User user = (User) session.Get(typeof(User), uid);
 foreach(BillingDetails bd in user.BillingDetails){
 bd.Pay(ccPaymentAmount);
 }
 session.Transaction.Commit();
}

Note that bd.Pay(...) calls the appropriate BillingDetails subclass instance. In the
examples so far, we’ve assumed that BillingDetails is a class mapped explicitly in
the NHibernate mapping document, and that the inheritance mapping strategy is
table-per-hierarchy or table-per-subclass. We haven’t yet considered the case of a table-
per-concrete-class mapping strategy, where BillingDetails isn’t mentioned explicitly
in the mapping file, but only in the C# definition of the subclasses.

204 CHAPTER 6 Advanced mapping concepts
6.4.3 Polymorphic associations and table-per-concrete-class

In section 3.8.1, we defined the table-per-concrete-class mapping strategy and observed that
this mapping strategy makes it difficult to represent a polymorphic association, because
you can’t map a foreign-key relationship to the table of the abstract base class. There is
no table for the base class with this strategy; you only have tables for concrete classes.

 Suppose that you want to represent a polymorphic many-to-one association from
User to BillingDetails, where the BillingDetails class hierarchy is mapped using
this table-per-concrete-class strategy. You have CREDIT_CARD and BANK_ACCOUNT
tables but no BILLING_DETAILS table. You need two pieces of information in the USER
table to uniquely identify the associated CreditCard or BankAccount:

■ The name of the table in which the associated instance resides
■ The identifier of the associated instance

The USER table requires the addition of a BILLING_DETAILS_TYPE column in addi-
tion to the BILLING_DETAILS_ID. You use an NHibernate <any> element to map this
association:

<any name="BillingDetails"
 meta-type="String"
 id-type="Int32"
 cascade="save-update">
 <meta-value value="CREDIT_CARD" class="CreditCard"/>
 <meta-value value="BANK_ACCOUNT"class="BankAccount"/>
 <column name="BILLING_DETAILS_TYPE"/>
 <column name="BILLING_DETAILS_ID"/>
</any>

The meta-type attribute specifies the NHibernate type of the BILLING_DETAILS_TYPE
column; the id-type attribute specifies the type of the BILLING_DETAILS_ID column
(CreditCard and BankAccount must have the same identifier type). Note that the
order of the <column> elements is important: first the type, then the identifier.

 The <meta-value> elements tell NHibernate how to interpret the value of the
BILLING_DETAILS_TYPE column. You can use any value you like as a type discrimina-
tor. For example, you can encode the information in two characters:

<any name="BillingDetails"
 meta-type="String"
 id-type="Int32"
 cascade="save-update">
 <meta-value value="CC" class="CreditCard"/>
 <meta-value value="CA" class="BankAccount"/>
 <column name="BILLING_DETAILS_TYPE"/>
 <column name="BILLING_DETAILS_ID"/>
</any>

The <meta-value> elements are optional; if you omit them, NHibernate uses the fully
qualified names of the classes. An example of this table structure is shown in figure 6.16.

 Here is the first major problem with this kind of association: you can’t add a for-
eign-key constraint to the BILLING_DETAILS_ID column, because some values refer to

205Summary
the BANK_ACCOUNT table and others to the CREDIT_CARD table. You need to come
up with some other way to ensure integrity. A database trigger may be one way of
achieving this.

 Furthermore, it’s difficult to write SQL table joins for this association. In particular,
the NHibernate query facilities don’t support this kind of association mapping, nor
may this association be fetched using an outer join. We discourage the use of <any>
associations for all but the most special cases.

 As you can see, polymorphism is messier in the case of a table-per-concrete-class
inheritance-mapping strategy. We don’t usually use this mapping strategy when poly-
morphic associations are required. As long as you stick to the other inheritance-map-
ping strategies, polymorphism is straightforward, and you don’t usually need to think
about it.

6.5 Summary
This chapter covered the finer points of ORM and techniques sometimes required to
solve the structural mismatch problem. You can now fully map all the entities and
associations in the CaveatEmptor domain model.

 We also discussed the NHibernate type system, which distinguishes entities from
value types. An entity instance has its own lifecycle and persistent identity; an instance
of a value type is completely dependant on an owning entity.

 NHibernate defines a rich variety of built-in value mapping types that bridge the
gap between .NET types and SQL types. When these predefined types are insufficient,
you can easily extend them using custom types or component mappings and even
implement arbitrary conversions from .NET to SQL data types.

 Collection-valued properties are considered to be of value type. A collection
doesn’t have its own persistent identity and belongs to a single owning entity. You’ve
seen how to map collections, including collections of value-typed instances and many-
valued entity associations.

 NHibernate supports one-to-one, one-to-many, and many-to-many associations
between entities. In practice, we recommend against the overuse of many-to-many

<<Table>>

CREDIT_CARD

CREDIT_CARD_ID <<PK>>

OWNER

...

<<Table>>

BANK_ACCOUNT

BANK_ACCOUNT_ID <<PK>>

OWNER

...

<<Table>>

USER

USER_ID <<PK>>

BILLING_DETAILS_TYPE <<Discriminator>>

BILLING_DETAILS_ID <<Any>>

FIRSTNAME

LASTNAME

USERNAME

...

Figure 6.16 Using
a discriminator
column with an
<any> association

206 CHAPTER 6 Advanced mapping concepts
associations. Associations in NHibernate are naturally polymorphic. We also talked
about bidirectional behavior of such relationships.

 Having covered mapping techniques in great detail, the next chapter will now
move away from the topic of mapping and turn to the subject of object retrieval. This
builds on the concepts introduced in chapter 4 and gives more detailed information
that will let you build more efficient and flexible queries. We’ll also cover some of the
more advanced topics that surround object retrieval, such as report queries, fetching
associations, and caching.

Retrieving
 objects efficiently
Queries are the most interesting part of writing good data access code. A complex
query may require a long time to get right, and its impact on the performance of
an application can be tremendous. As with regular SQL, writing NHibernate queries
becomes much easier with experience.

 If you’ve been using handwritten SQL for a number of years, you may be con-
cerned that ORM will take away some of the expressiveness and flexibility you’re
used to. This is seldom the case; NHibernate’s powerful query facilities allow you to
do almost anything you would in SQL, and in some cases more. For the rare cases
where you can’t make NHibernate’s own query facilities do exactly what you want,
NHibernate allows you to retrieve objects using your database’s native SQL dialect.

This chapter covers
■ NHibernate query features
■ HQL, criteria, and native SQL
■ Advanced, reporting, and dynamic queries
■ Runtime fetching and query optimization
207

208 CHAPTER 7 Retrieving objects efficiently
 In section 4.4, we mentioned that there are three ways to express queries in NHi-
bernate. First is the HQL :

session.CreateQuery("from Category c where c.Name like 'Laptop%'");

Next is the ICriteria API:

session.CreateCriteria(typeof(Category))
 .Add(Expression.Like("Name", "Laptop%"));

Finally, there is direct SQL, which automatically maps result sets to objects:

session.CreateSQLQuery(
 "select {c.*} from CATEGORY {c} where NAME like 'Laptop%'",
 "c",
 typeof(Category));

This chapter covers in-depth techniques using all three methods. You can also use this
chapter as a reference; some sections are written in a less verbose style but show many
small code examples for different use cases.

 Before we continue, we briefly introduce another method of querying NHibernate:
LINQ-to-NHibernate. This allows you to write LINQ queries to query NHibernate like
this:

from cat in session.Linq<Category>()
where cat.Name.StartsWith("Laptop")
select cat

 LINQ-to-NHibernate is an exciting and welcome addition. Unfortunately, at the time
of writing it is still very much in Beta, so we can’t cover it in detail here. If you want to
try using LINQ-to-NHibernate, you can find the source code in the NHContrib project
at http://nhcontrib.wiki.sourceforge.net/. We recommend downloading the source
code and examining the unit tests to see up-to-date examples of how it can be used.

 Let’s continue with our investigations into HQL, the Criteria API, and direct SQL
queries. We start our exploration by showing you how queries are executed with NHi-
bernate. Rather than focus on the queries themselves, we focus on the various tech-
niques for creating and running queries using NHibernate. Following that, we move
on to discuss the particulars of how queries are composed.

7.1 Executing queries
The IQuery and ICriteria interfaces both define several methods for controlling
execution of a query. To execute a query in your application, you need to obtain an
instance of one of these query interfaces using the ISession. Let’s take a quick look at
how you can do that.

7.1.1 The query interfaces

To create a new IQuery instance, call either CreateQuery() or CreateSQLQuery().
IQuery can be used to prepare an HQL query as follows:

IQuery hqlQuery = session.CreateQuery("from User");

http://nhcontrib.wiki.sourceforge.net/

209Executing queries
This query is now set up to fetch all user objects in the databases. You can achieve the
same thing using the CreateSQLQuery() method, using the native SQL dialect of the
underlying database:

IQuery sqlQuery = session.CreateSQLQuery(
 "select {u.*} from USERS {u}", "u",
 typeof(User));

You’ll learn more about running SQL queries in section 8.5.4. Finally, here’s how you
use the strongly typed ICriteria interface to do the same thing in a different way:

ICriteria crit = session.CreateCriteria(typeof(User));

This last example uses CreateCriteria() to get back a list of objects. Notice that the
root entity type you want the query to return is specified as User. We study criteria
queries in detail later.

Now we continue our discussion of creating and running queries by looking at
another useful concept: pagination.
PAGING THE RESULT

Pagination is a commonly used technique, and you’ve probably seen it in action. For
example, an eCommerce web site may display lists of products over a number of
pages, each showing only 10 or 20 products at a time. Typically, users navigate to the
next or previous pages by clicking appropriate links on the page. When writing data
access code for this scenario, you need to work out how to show the correct page of
records at any given time—and that’s what pagination is all about.

 In NHibernate, both the IQuery and ICriteria interfaces make pagination sim-
ple, as demonstrated here:

IQuery query =
 session.CreateQuery("from User u order by u.Name asc");
query.SetFirstResult(0);
query.SetMaxResults(10);

The call to SetMaxResults(10) limits the query result set to the first 10 objects
selected by the database. What if you wanted to get some results for the next page?

ICriteria crit = session.CreateCriteria(typeof(User));
crit.AddOrder(Order.Asc("Name"));
crit.SetFirstResult(10);
crit.SetMaxResults(10);
IList<User> results = crit.List<User>();

A note about CaveatEmptor
Some queries in this chapter won’t work with the CaveatEmptor code that accompa-
nies this book. This is because certain techniques illustrated here require variations
in the way classes and their mappings are defined.

210 CHAPTER 7 Retrieving objects efficiently
Starting from the tenth object, you retrieve the next 10 objects. Note that there is no
standard way to express pagination in SQL, and each database vendor often provides a
different syntax and approach. Fortunately, NHibernate knows the tricks for each ven-
dor, so paging is easily done regardless of your particular database.

 IQuery and ICriteria also expose a fluent interface that allows method chaining.
To demonstrate, we’ve rewritten the two previous examples to take advantage of this
technique:

IList<User> results =
 session.CreateQuery("from User u order by u.Name asc")
 .SetFirstResult(0)
 .SetMaxResults(10)
 .List<User>();
IList<User> results =
 session.CreateCriteria(typeof(User))
 .AddOrder(Order.Asc("Name"))
 .SetFirstResult(40)
 .SetMaxResults(20)
 .List<User>();

Chaining method calls this way is considered to be less verbose and easier to write,
and it’s possible to do with many of NHibernate’s APIs.

 Now that you’ve created queries and set up pagination, we look at how you get the
results of a query.
LISTING AND ITERATING RESULTS

The List() method executes the query and returns the results as a list:

IList<User> result = session.CreateQuery("from User").List<User>();

When writing queries, sometimes you want only a single instance to be returned. For
example, if you want to find the highest bid, you can get that instance by reading it
from the result list by index: result[0]. Alternatively, you can use SetMaxResults(1)
and execute the query with the UniqueResult() method:

Bid maxBid =
 (Bid) session.CreateQuery("from Bid b order by b.Amount desc")
 .SetMaxResults(1)
 .UniqueResult();
Bid bid = (Bid) session.CreateCriteria(typeof(Bid))
 .Add(Expression.Eq("Id", id))
 .UniqueResult();

You need to be sure your query returns only one object; otherwise, an exception will
be thrown.

 The IQuery and ISession interfaces also provide an Enumerable() method, which
returns the same result as List()or Find(), but which uses a different strategy for
retrieving the results. When you use Enumerable() to execute a query, NHibernate
retrieves only the primary key (identifier) values in the first SQL select; it tries to find
the rest of the state of the objects in the cache before querying again for the rest of
the property values. You can use this technique to optimize loading in specific cases,
as discussed in section 7.7.

211Executing queries
Finally, another important factor when constructing queries is binding parameters.
The IQuery interface lets you achieve this in a flexible manner, as we discuss next.

7.1.2 Binding parameters

Allowing developers to bind values to queries is an important feature for any data
access library because it permits you to construct queries that are both maintainable
and secure. We demonstrate the types of parameter binding available in NHibernate;
but first, let’s look at the potential problems of not binding parameters.
THE PROBLEM OF SQL INJECTION ATTACKS

Consider the following code:

string queryString =
 "from Item i where i.Description like '" + searchString + "'";
IList result = session.CreateQuery(queryString).List();

This code is plainly and simplly bad! You may know why: it can potentially leave your
application open to SQL injection attacks. In such an attack, a malicious user attempts
to trick your application into running the user’s own SQL against the database,
in order to cause damage or circumnavigate application security. If that user typed
this searchString

foo' and CallSomeStoredProcedure() and 'bar' = 'bar

the queryString sent to the database would be

from Item i where i.Description like 'foo' and CallSomeStoredProcedure()
 and 'bar' = 'bar'

As you can see, the original queryString would no longer be a simple search for a
string, but would also execute a stored procedure in the database!

 One of the main problems here is that the application isn’t checking the values
passed in from the user interface. Because of this, the quote characters aren’t
escaped, and users can inject their own SQL. Users may even accidentally crash your
application just by putting a single quote in the search string. The golden rule is,
“Never pass unchecked values from user input to the database!”

 Fortunately, you can easily avoid this problem by using parameters. With parame-
ters, your query may look like this:

string queryString =
"from Items I where i.Description like :searchString"

Why not use ISession.Find() instead of IQuery.List()?
The ISession API provides shortcut methods for simple queries. Instead of creating
an IQuery instance, you can also call ISession.Find("from User"). The result is
the same as from IQuery.List(). The same is true for Enumerable().

But the query shortcut methods on the ISession API will be removed in the future to
reduce the bloat of session methods. We recommend always using the IQuery API.

212 CHAPTER 7 Retrieving objects efficiently
When you use parameters, queries and parameters are sent to the database separately,
so the database can ensure they’re dealt with securely and efficiently.

 Another reason to use parameters is that they help NHibernate be more efficient.
NHibernate keeps track of the queries you execute; when parameters are used, it
needs to keeps only one copy of the query in memory, even if the query is run thou-
sands of times with different parameters each time.

 Now you understand the importance of parameters. How do you use them in your
NHibernate queries? There are two approaches to parameter binding: named parame-
ters and positional parameters. We discuss these in turn.
USING NAMED PARAMETERS

Using named parameters, you can rewrite the earlier query as follows:

string queryString =
 "from Item item where item.Description like :searchString";

The colon followed by a parameter name indicates a named parameter. Then you can
use the IQuery interface to bind a value to the searchString parameter:

IList result = session.CreateQuery(queryString)
 .SetString("searchString", searchString)
 .List();

Because searchString is a user-supplied string variable, you use the SetString()
method of the IQuery interface to bind it to the named parameter (searchString).

 Often, you’ll need multiple parameters:

string queryString = @"from Item item
 where item.Description like :searchString
 and item.Date > :minDate";
IList result = session.CreateQuery(queryString)
 .SetString("searchString", searchString)
 .SetDate("minDate", minDate)
 .List();

This code is cleaner, much safer, and performs better, because a single compiled SQL
statement can be reused if only bind parameters change.
USING POSITIONAL PARAMETERS

If you prefer, you can use positional parameters:

string queryString = @"from Item item
 where item.Description like ?
 and item.Date > ?";
IList result = session.createQuery(queryString)
 .SetString(0, searchString)
 .SetDate(1, minDate)
 .List();

Not only is this code less self-documenting than the alternative that uses named
parameters, but it’s also much more vulnerable to breakage if you change the query
string slightly:

string queryString = @"from Item item
 where item.Date > ?
 and item.Description like ?";

213Executing queries
Every change of the bind parameters’ positions requires a change to the parameter-
binding code. This leads to fragile and maintenance-intensive code. We recommend
that you avoid positional parameters:

string userSearch =
 @"from User u where u.Username like :searchString
 or u.Email like :searchString";
IList result = session.CreateQuery(userSearch)
 .SetString("searchString", searchString)
 .List();

Notice how the named parameter may appear multiple times in the query string.
BINDING ARBITRARY ARGUMENTS

You’ve used SetString() and SetDate() to bind arguments to query parameters. The
IQuery interface provides similar convenience methods for binding arguments of
most of the NHibernate built-in types: everything from SetInt32() to SetTime-
stamp() and SetEnum().

 A particularly useful method is SetEntity(), which lets you bind a persistent entity:

session.CreateQuery("from Item item where item.Seller = :seller")
 .SetEntity("seller", seller)
 .List();

In addition, a generic method allows you to bind an argument of any NHibernate type:

string queryString = @"from Item item
 where item.Seller=:seller and
 item.Description like :desc";
session.CreateQuery(queryString)
 .SetParameter("seller", seller,
 NHibernateUtil.Entity(typeof(User)))
 .SetParameter("desc", description, NHibernateUtil.String)
 .List();

This even works for custom user-defined types like MonetaryAmount:

IQuery q =
 session.CreateQuery("from Bid bid where bid.Amount > :amount");
q.SetParameter("amount",
 givenAmount,
 NHibernateUtil.Custom(typeof(MonetaryAmountUserType)));
IList<Bid> result = q.List<Bid>();

For some parameter types, it’s possible to guess the NHibernate type from the class of
the parameter value. In this case, you don’t need to specify the NHibernate type explicitly:

string queryString = @"from Item item
 where item.Seller = :seller and
 item.Description like :desc";
session.CreateQuery(queryString)
 .SetParameter("seller", seller)
 .SetParameter("desc", description)
 .List();

As you can see, it even works with entities, such as seller. This approach works nicely
for string, int, and bool parameters, for example, but not so well for DateTime,

214 CHAPTER 7 Retrieving objects efficiently
where the NHibernate type may be Timestamp or DateTime. In that case, you have to
use the appropriate binding method or explicitly use NHibernateUtil.DateTime (or
any other NHibernate type) as the third argument to SetParameter().

 If you have a POCO with Seller and Description properties, you can use the Set-
Properties() method to bind the query parameters. For example, you can pass query
parameters in an instance of the Item class:

Item item = new Item();
item.Seller = seller;
item.Description = description;
string queryString = @"from Item item
 where item.Seller=:seller and
 item.Description like :desc";
session.CreateQuery(queryString).SetProperties(item).List();

SetProperties() matches the names of POCO properties to named parameters in the
query string, using SetParameter() to guess the NHibernate type and bind the value.
In practice, this turns out to be less useful than it sounds, because some common NHi-
bernate types aren’t guessable (DateTime in particular).

 The parameter-binding methods of IQuery are null-safe, making this code legal:

session.CreateQuery("from User as u where u.Email = :email")
 .SetString("email", null)
 .List();

But the result of this code is almost certainly not what you intended. The resulting
SQL will contain a comparison like username = null, which always evaluates to null in
SQL ternary logic. Instead, you must use the is null operator:

session.CreateQuery("from User as u where u.Email is null").List();

So far, the HQL code examples we’ve shown all use embedded HQL query string liter-
als. This isn’t unreasonable for simple queries; but once we begin considering com-
plex queries that must be split over multiple lines, it starts to get unwieldy.

7.1.3 Using named queries

We don’t like to see HQL string literals scattered all over C# code unless they’re neces-
sary. NHibernate lets you store query strings outside of your code, a technique that is
called named queries. This approach allows you to store all queries related to a particu-
lar persistent class along with the other metadata of that class in an XML mapping file.
You use the name of the query to call it from the application.

 The GetNamedQuery() method obtains an IQuery instance for a named query:

session.GetNamedQuery("FindItemsByDescription")
 .SetString("description", description)
 .List();

In this example, you execute the named query FindItemsByDescription after bind-
ing a string argument to a named parameter. The named query is defined in mapping
metadata, such as in Item.hbm.xml, using the <query> element:

215Basic queries for objects
<query name="FindItemsByDescription"><![CDATA[
 from Item item where item.Description like :description
]]></query>

Named queries don’t have to be HQL strings; they may even be native SQL que-
ries—and your C# code doesn’t need to know the difference:

<sql-query name="FindItemsByDescription"><![CDATA[
 select {i.*} from ITEM {i} where DESCRIPTION like :description
]]>
 <return alias="i" class="Item"/>
</sql-query>

This is useful if you think you may want to optimize your queries later by fine-tuning
the SQL. It’s also a good solution if you have to port a legacy application to NHiber-
nate, where SQL code was isolated from the handcoded ADO.NET routines. With
named queries, you can easily port the queries one by one to mapping files.

7.1.4 Using query substitutions

It’s often necessary, or at least useful, to use a different word to name an object in a
query. For example, with a Boolean property like User.IsAdmin, you write

from User u where u.IsAdmin = 1

But by adding this property to your configuration file

<property name="hibernate.query.substitutions">
 true 1, false 0
</property>

you can write

from User u where u.IsAdmin = true

Note that you can also use this feature to rename SQL functions.
 We’ve now wrapped up our discussion of creating and running queries. It’s time to

focus on the queries themselves. The next section covers HQL, starting with simple
queries and moving on to far more advanced topics.

7.2 Basic queries for objects
Let’s start with simple queries, to become familiar with the HQL syntax and seman-
tics. Although we show the criteria alternative for most HQL queries, keep in mind
that HQL is the preferred approach for complex queries. Usually, the criteria can
be derived if you know the HQL equivalent; it’s much more difficult the other
way around.

7.2.1 The simplest query

The simplest query retrieves all instances of a particular persistent class. In HQL, it
looks like this:

from Bid

216 CHAPTER 7 Retrieving objects efficiently
Using the ICriteria interface, it looks like this:

ICriteria c = session.CreateCriteria(typeof(Bid));

Both generate the following SQL behind the scenes:

select B.BID_ID, B.AMOUNT, B.ITEM_ID, B.CREATED from BID B

Even for this simple case, you can see that HQL is less verbose than SQL.

7.2.2 Using aliases

When you query a class using HQL, you often need to assign an alias to the queried
class, which you use as reference in other parts of the query:

from Bid as bid

The as keyword is always optional. The following is equivalent:

from Bid bid

Think of this as being like the temporary variable declaration in the following C# code:

for (int i = 0; i < allQueriedBids.Count; i++) {
 Bid bid = (Bid) allQueriedBids[i];
 //...
}

You assign the alias bid to queried instances of the Bid class, allowing you to refer to
their property values later in the code (or query). To remind yourself of the similarity,
we recommend that you use the same naming convention for aliases that you use for
temporary variables (camelCase, usually). We use shorter aliases in some of the exam-
ples in this book (for example, i instead of item) to keep the printed code readable.

NOTE You never write HQL keywords in uppercase; you never write SQL key-
words in uppercase either. It looks ugly and antiquated—most modern
terminals can display both uppercase and lowercase characters. HQL isn’t
case-sensitive for keywords, so you can write FROM Bid AS bid if you like
shouting.

By contrast, a criteria query defines an implicit alias. The root entity in a criteria query
is always assigned the alias this. We discuss this topic in more detail later, when you’re
joining associations with criteria queries. You don’t have to think much about aliases
when using the ICriteria API.

Testing NHibernate queries
You can use the open source tool NHibernate Query Analyzer to execute NHibernate
queries ad hoc. It lets you select NHibernate mapping documents (or write them), set
up the NHibernate configuration, and then view the result of HQL queries you type
interactively. More details are provided in section 7.7.4.

217Basic queries for objects
7.2.3 Polymorphic queries

We’ve described HQL as an object-oriented query language, so it should support poly-
morphic queries—that is, queries for instances of a class and all instances of its sub-
classes, respectively. You already know enough HQL that we can demonstrate this.
Consider the following query:

from BillingDetails

This query returns objects of the type BillingDetails, which is an abstract class. In
this case, the concrete objects are of the subtypes of BillingDetails: CreditCard and
BankAccount. If you only want instances of a particular subclass, you can use

from CreditCard

The class named in the from clause doesn’t need to be a mapped persistent class; any
class will do. The following query returns all persistent objects in the entire database:

from System.Object

This technique also works for interfaces. The following query returns all serializable
persistent objects (those implementing the interface ISerializable):

from System.ISerializable

Criteria queries also support polymorphism:

session.CreateCriteria(typeof(BillingDetails)).List();

This query returns instances of BillingDetails and its subclasses. Likewise, the fol-
lowing criteria query returns all persistent objects:

session.CreateCriteria(typeof(System.Object)).List();

Polymorphism applies not only to classes named explicitly in the from clause, but also
to polymorphic associations, as you’ll see later.

 Now that we’ve discussed the from clause, let’s move on to the other parts of HQL.

7.2.4 Restriction

You usually don’t want to retrieve all instances of a class when you run a query.
Instead, you want to express some constraints on the property values of your objects,
so only a subset of objects is retrieved. This is called restriction, and in both HQL and
SQL, you achieve it using the where clause.

 A where clause can be simple or complex, but let’s start with a simple HQL example:

from User u where u.Email = 'foo@hibernate.org'

Notice that the constraint is expressed in terms of a property, Email, of the User class,
and that you use an object-oriented notion: just as in C#, u.Email may not be abbrevi-
ated to plain Email.

 For a criteria query, you must construct an ICriterion object to express the con-
straint. The Expression class provides factory methods for built-in ICriterion types.
Let’s create the same query using criteria and immediately execute it:

218 CHAPTER 7 Retrieving objects efficiently
ICriterion emailEq = Expression.Eq("Email", "foo@hibernate.org");
ICriteria crit = session.CreateCriteria(typeof(User));
crit.add(emailEq);
User user = (User) crit.UniqueResult();

You create an ICriterion instance holding the simple Expression for an equality
comparison and add it to the ICriteria. The UniqueResult() method executes the
query and returns exactly one object as a result.

 Usually, you’ll write this less verbosely, using method chaining:

User user = (User) session.CreateCriteria(typeof(User))
 .Add(Expression.Eq("Email", "foo@hibernate.org"))
 .UniqueResult();

The SQL generated by these queries is as follows:

select U.USER_ID, U.FIRSTNAME, U.LASTNAME, U.USERNAME, U.EMAIL
from USER U
where U.EMAIL = 'foo@hibernate.org'

It’s common to have a restriction that should always be used; most of the time, it’s
used to ignore deprecated data. You may, for example, have an Active property and
write the following:

select User u where u.Email = 'foo@hibernate.org' and u.Active = 1

But this is dangerous, because you may forget the restriction; a better solution, in this
case, is to change your mapping:

<class name="User" where="ACTIVE=1">

Now, you can write

from User u where u.Email = 'foo@hibernate.org'

This query generates the following SQL query:

select U.USER_ID, U.FIRSTNAME, U.LASTNAME, U.USERNAME, U.EMAIL
from USER U
where U.EMAIL = 'foo@hibernate.org' and U.ACTIVE = 1

Note that the ACTIVE column doesn’t have to be mapped. And, since NHibernate 1.2.0,
this attribute is also used when calling ISession.Load() and ISession.Get(). This fea-
ture is also available for collections:

<bag name="Users" where="ACTIVE=1">

Here, the collection Users will contain only users whose ACTIVE value is 1.
 This approach can be useful, but we recommend considering filters for most sce-

narios (see section 7.5.2, “Collection filters”). You can, of course, use various other
comparison operators for restriction.

7.2.5 Comparison operators

A restriction is expressed using ternary logic. The where clause is a logical expression
that evaluates to true, false, or null for each tuple of objects. You construct logical
expressions by comparing properties of objects to other properties or literal values
using HQL’s built-in comparison operators.

219Basic queries for objects
HQL supports the same basic operators as SQL: =, <>, <, >, >=, <=, between, not
between, in, and not in. For example:

from Bid bid where bid.Amount between 1 and 10
from Bid bid where bid.Amount > 100
from User u where u.Email in ('foo@hibernate.org', 'bar@hibernate.org')

In case of criteria queries, all the same operators are available via the Expression class:

session.CreateCriteria(typeof(Bid))
 .Add(Expression.Between("Amount", 1, 10))
 .List();
session.CreateCriteria(typeof(Bid))
 .Add(Expression.Gt("Amount", 100))
 .List();
string[] emails = { "foo@NHibernate.org", "bar@NHibernate.org" };
session.CreateCriteria(typeof(User))
 .Add(Expression.In("Email", emails))
 .List();

Because the underlying database implements ternary logic, testing for null values
requires some care. Remember that null = null doesn’t evaluate to true in the data-
base, but to null. All comparisons that use the null operator evaluate to null. Both
HQL and the ICriteria API provide an SQL-style is null operator:

from User u where u.Email is null

This query returns all users with no email address. The same semantic is available in
the ICriteria API:

session.CreateCriteria(typeof(User))
 .Add(Expression.IsNull("Email"))
 .List();

You also need to be able to find users who have an email address:

from User u where u.Email is not null
session.CreateCriteria(typeof(User))
 .Add(Expression.IsNotNull("Email"))
 .List();

Finally, the HQL where clause supports arithmetic expressions (but the ICriteria API
doesn’t):

from Bid bid where (bid.Amount / 0.71) - 100.0 > 0.0

What is ternary logic?
A row is included in a SQL result set if and only if the where clause evaluates to true.
In C#, notNullObject==null evaluates to false, and null==null evaluates to true.
In SQL, NOT_NULL_COLUMN=null and null=null both evaluate to null, not true.
Thus, SQL needs a special operator, IS NULL, to test whether a value is null. This
ternary logic is a way of handling expressions that may be applied to null column val-
ues. It’s a (debatable) SQL extension to the familiar binary logic of the relational mod-
el and of typical programming languages such as C#.

220 CHAPTER 7 Retrieving objects efficiently
For string-based searches, you need to be able to perform case-insensitive matching
and matches on fragments of strings in restriction expressions.

7.2.6 String matching

The like operator allows wildcard searches, where the wildcard symbols are % and _,
just as in SQL:

from User u where u.Firstname like "S%"

This expression restricts the result to users with a first name starting with a capital S. You
can also negate the like operator, for example by using a substring match expression:

from User u where u.Firstname not like "%Foo S%"

For criteria queries, wildcard searches may either use the same wildcard symbols or
specify a MatchMode. NHibernate provides the MatchMode as part of the ICriteria
query API; you use it to write string match expressions without string manipulation.
These two queries are equivalent:

session.CreateCriteria(typeof(User))
 .Add(Expression.Like("Firstname", "S%"))
 .List();
session.CreateCriteria(typeof(User))
 .Add(Expression.Like("Firstname", "S", MatchMode.Start))
 .List();

The allowed MatchModes are Start, End, Anywhere, and Exact.
 An extremely powerful feature of HQL is the ability to call arbitrary SQL functions

in the where clause. If your database supports user-defined functions (most do), you
can put this functionality to all sorts of uses, good or evil. For the moment, let’s con-
sider the usefulness of the standard ANSI SQL functions upper() and lower(). They
can be used for case-insensitive searching:

from User u where lower(u.Email) = 'foo@hibernate.org'

The ICriteria API doesn’t currently support SQL function calls. But it does provide a
special facility for case-insensitive searching:

session.CreateCriteria(typeof(User))
 .Add(Expression.Eq("Email", "foo@hibernate.org").IgnoreCase())
 .List();

Unfortunately, HQL doesn’t provide a standard string-concatenation operator;
instead, it supports whatever syntax your database provides. Here is an example for
SQL Server:

from User user
 where (user.Firstname + ' ' + user.Lastname) like 'S% K%'

We return to more exotic features of the HQL where clause later in this chapter. We
only used single expressions for restrictions in this section; let’s combine several with
logical operators.

221Basic queries for objects
7.2.7 Logical operators

Logical operators (and parentheses for grouping) are used to combine expressions:

from User user
 where user.Firstname like "S%" and user.Lastname like "K%"
from User user
 where (user.Firstname like "S%" and user.Lastname like "K%")
 or user.Email in ('foo@hibernate.org', 'bar@hibernate.org')

If you add multiple ICriterion instances to the one ICriteria instance, they’re
applied conjunctively (that is, using and):

session.CreateCriteria(typeof(User))
 .Add(Expression.Like("Firstname", "S%"))
 .Add(Expression.Like("Lastname", "K%"))

If you need disjunction (or), you have two options. The first is to use Expres-
sion.Or() together with Expression.And():

ICriteria crit = session.CreateCriteria(typeof(User))
 .Add(
 Expression.Or(
 Expression.And(
 Expression.Like("Firstname", "S%"),
 Expression.Like("Lastname", "K%")
),
 Expression.In("Email", emails)
)
);

The second option is to use Expression.Disjunction() together with Expression.
Conjunction():

ICriteria crit = session.CreateCriteria(typeof(User))
 .Add(Expression.Disjunction()
 .Add(Expression.Conjunction()
 .Add(Expression.Like("Firstname", "S%"))
 .Add(Expression.Like("Lastname", "K%"))
)
 .Add(Expression.In("Email", emails))
);

We think both options are ugly, even after spending five minutes trying to format
them for maximum readability. Unless you’re constructing a query on the fly, the HQL
string is much easier to understand. Complex criteria queries are useful only when
they’re created programmatically; for example, in the case of a complex search screen
with several optional search criteria, you may have a CriteriaBuilder that translates
user restrictions to ICriteria instances.

7.2.8 Ordering query results

All query languages provide a mechanism for ordering query results. HQL provides an
order by clause, similar to SQL.

222 CHAPTER 7 Retrieving objects efficiently
 This query returns all users, ordered by username:

from User u order by u.Username

You specify ascending and descending order using asc or desc:

from User u order by u.Username desc

Finally, you can order by multiple properties:

from User u order by u.Lastname asc, u.Firstname asc

The ICriteria API provides a similar facility:

IList results = session.CreateCriteria(typeof(User))
 .AddOrder(Order.Asc("Lastname"))
 .AddOrder(Order.Asc("Firstname"))
 .List();

Thus far, we’ve only discussed the basic concepts of HQL and criteria queries. You’ve
learned how to write a simple from clause and use aliases for classes. You’ve combined
various restriction expressions with logical operators. But you’ve focused on single per-
sistent classes—that is, you’ve only referenced a single class in the from clause. An impor-
tant query technique we haven’t discussed yet is the joining of associations at runtime.

7.3 Joining associations
When you’re querying databases, sometimes you want to combine data in two or more
relations. This is achieved using a join. For example, you may join the data in the ITEM
and BID tables, as shown in figure 7.1. Note that not all columns and possible rows are
shown; hence the dotted lines.

When most people hear the word join in the context of SQL databases, they think of
an inner join. An inner join is one of several types of joins, and it’s the easiest to
understand. Consider the SQL statement and result in figure 7.2. This SQL statement
is an ANSI-style join.

ITEM_ID NAME

1
2

Foo
Bar ITEM_ID AMOUNT

1
1
2

BID_ID

1
2
3

INITIAL_PRICE

2.00
50.00

10.00
20.00
55.50

3 Baz 1.00

ITEM

BID

Figure 7.1 The ITEM and BID
tables are obvious candidates
for a join operation.

ITEM_ID NAME

1

2

Foo

Bar

ITEM_ID AMOUNT

1
1
2

BID_ID

1
2
3

from ITEM I inner join BID B on I.ITEM_ID = B.ITEM_ID

INITIAL_PRICE

2.00

50.00

10.00
20.00
55.50

1 Foo 2.00
Figure 7.2 The result table of an
ANSI-style inner join of two tables

223Joining associations
If you join the tables ITEM and BID with an inner join, using their common attributes
(the ITEM_ID column), you get all items and their bids in a new result table. Note that
the result of this operation contains only items that have bids. If you want all items,
and null values instead of bid data when there is no corresponding bid, you use a
(left) outer join, as shown in figure 7.3.

 You can think of a table join as working in this way: First, you get a Cartesian prod-
uct of the two tables by taking all possible combinations of ITEM rows with BID rows.
Second, you filter these joined rows using a join condition. Note that the database has
much more sophisticated algorithms to evaluate a join; it usually doesn’t build a mem-
ory-consuming product and then filter all rows. The join condition is a Boolean
expression that evaluates to true if the joined row is to be included in the result. In the
case of the left outer join, each row in the (left) ITEM table that never satisfies the join
condition is also included in the result, with null values returned for all columns of
BID. (A right outer join retrieves all bids and null if a bid has no item—certainly not a
sensible query in this situation.)

 In SQL, the join condition is usually specified explicitly; it isn’t possible to use the
name of a foreign-key constraint to specify how two tables are to be joined. Instead,
you have to specify the join condition in the on clause for an ANSI-style join or in the
where clause for a so-called theta-style join, where I.ITEM_ID = B.ITEM_ID.

7.3.1 NHibernate join options

In NHibernate queries, you don’t usually specify a join condition explicitly. Rather,
you specify the name of a mapped class association so that NHibernate can work out
the join for you. For example, the Item class has an association named bids with the
Bid class. If you name this association in your query, NHibernate has enough informa-
tion in the mapping document to then deduce the join expression. This helps make
queries less verbose and more readable.

 HQL provides four ways of expressing inner and outer joins:

■ An ordinary join in the from clause
■ A fetch join in the from clause
■ A theta-style join in the where clause
■ An implicit association join

We discuss all of these options in this chapter. Because the ordinary and fetch from
clause joins have the clearest syntax, we discuss these first.

ITEM_ID NAME

1

2
3

Foo

Bar
Baz

ITEM_ID AMOUNT

1
1
2

BID_ID

1
2
3

from ITEM I left outer join BID B on I.ITEM_ID = B.ITEM_ID

INITIAL_PRICE

2.00

50.00
1.00

10.00
20.00
55.50

1 Foo 2.00

null null null Figure 7.3 The result of an ANSI-
style left outer join of two tables

224 CHAPTER 7 Retrieving objects efficiently
 When you’re working with NHibernate, there are usually several reasons to use a
join, and it’s important to note that NHibernate lets you differentiate between the pur-
poses for joining. Let’s put this in the context of a short example. If you’re querying
Items, there are three possible reasons why you may be interested in joining the Bids:

■ You want to retrieve Items returned on the basis of some criterion that should
be applied to their Bids. For example, you may want all Items that have a bid of
more than $100; this requires an inner join.

■ You’re running a query where you’re mainly interested in only the Items with-
out any special criterion for Bids. You may or may not want to access the Bids
for an item, but you want the option for NHibernate to lazily load them when
you first access the collection.

■ You want to execute an outer join to load all Items along with their Bids in the
same SELECT (eager fetching).

Remember that your default preference should be to map all associations lazily; an
eager, outer-join fetch query can be used to override this default fetching strategy at
runtime. We discuss this scenario first.

7.3.2 Fetching associations

In HQL, you can specify that an association should be eagerly fetched by an outer join
using the fetch keyword in the from clause:

from Item item
left join fetch item.Bids
 where item.Description like '%part%'

This query returns all Items with a description that contains the string part, and all
their Bids, in a single select. When executed, it returns a list of Item instances, with
their bids collections fully initialized. We call this a from clause fetch join. The pur-
pose of a fetch join is performance optimization: you use this syntax only because you
want eager initialization of the bids collections in a single SQL select.
You can do the same thing using the ICriteria API:

session.CreateCriteria(typeof(Item))
 .SetFetchMode("Bids", FetchMode.Eager)
 .Add(Expression.Like("Description", "part", MatchMode.Anywhere))
 .List();

Both of these queries result in the following SQL:

select I.DESCRIPTION, I.CREATED, I.SUCCESSFUL_BID, B.BID_ID,
B.AMOUNT, B.ITEM_ID, B.CREATED
from ITEM I
left outer join BID B on I.ITEM_ID = B.ITEM_ID
where I.DESCRIPTION like '%part%'

You can also prefetch many-to-one or one-to-one associations using the same syntax:

from Bid bid
left join fetch bid.Item
left join fetch bid.Bidder

225Joining associations
 where bid.Amount > 100
session.CreateCriteria(typeof(Bid))
 .SetFetchMode("Item", FetchMode.Eager)
 .SetFetchMode("Bidder", FetchMode.Eager)
 .Add(Expression.Gt("Amount", 100))
 .List();

These queries execute the following SQL:

select I.DESCRIPTION, I.CREATED, I.SUCCESSFUL_BID,
B.BID_ID, B.AMOUNT, B.ITEM_ID, B.CREATED,
U.USERNAME, U.PASSWORD, U.FIRSTNAME, U.LASTNAME
from BID B
left outer join ITEM I on I.ITEM_ID = B.ITEM_ID
left outer join USER U on U.USER_ID = B.BIDDER_ID
where B.AMOUNT > 100

Note that the left keyword is optional in HQL, so you can rewrite the previous exam-
ples using join fetch. Although this looks straightforward to use, you must consider
and remember a couple of things.

 First, HQL always ignores the mapping document eager fetch (outer join)
setting. If you’ve mapped some associations to be fetched by outer join, by setting
outer-join="true" or fetch="join" on the association mapping, any HQL query will
ignore this preference. With HQL, if you want eager fetching, you need to ask for it in
the query string. HQL is designed to be as flexible as possible: you can completely
(re)define the fetching strategy that should be used at runtime. In comparison, the
criteria will take full notice of your mappings! If you specify outer-join="true" in
the mapping file, the criteria query will fetch that association by outer join—just like
ISession.Get() or ISession.Load() for retrieval by identifier. For a criteria query,
you can explicitly disable outer-join fetching by calling SetFetchMode("Bids",
FetchMode.Lazy).

 NHibernate currently limits you to fetching just one collection eagerly. This is a
reasonable restriction, because fetching more than one collection in a single query
would be a Cartesian product result. This restriction may be relaxed in a future ver-
sion of NHibernate, but we encourage you to think about the size of the result set if
more than one collection is fetched in an outer join. The amount of data that must be
transported between database and application can easily grow into the megabyte
range, and most of it is thrown away immediately (NHibernate flattens the tabular
result set to build the object graph). You may fetch as many one-to-one or many-to-one
associations as you like.

 If you fetch a collection, NHibernate doesn’t return a distinct result list. For
example, an individual Item may appear several times in the result IList, if you outer-
join fetch the bids. You’ll probably need to make the results distinct yourself using, for
example, distinctResults = new HashedSet(resultList);. An ISet doesn’t allow
duplicate elements.

 This is how NHibernate implements what we call runtime association fetching strate-
gies, a powerful feature that is essential for achieving high performance in ORM. Let’s
continue with the other join operations.

226 CHAPTER 7 Retrieving objects efficiently
7.3.3 Using aliases with joins

We’ve already discussed the role of the where clause in expressing restriction. Often,
you’ll need to apply restriction criteria to multiple associated classes (joined tables). If
you want to do this using an HQL from clause join, you need to assign an alias to the
joined class:

from Item item
join item.Bids bid
 where item.Description like '%part%'
 and bid.Amount > 100

This query assigns the alias item to the class Item and the alias bid to the joined Item’s
bids. You then use both aliases to express your restriction criteria in the where clause.
The resulting SQL is as follows:

select I.DESCRIPTION, I.CREATED, I.SUCCESSFUL_BID,
B.BID_ID, B.AMOUNT, B.ITEM_ID, B.CREATED
from ITEM I
inner join BID B on I.ITEM_ID = B.ITEM_ID
where I.DESCRIPTION like '%part%'
and B.AMOUNT > 100

The query returns all combinations of associated Bids and Items. But unlike a fetch
join, the Bids collection of the Item isn’t initialized by the query! What do we mean by
a combination here? We mean an ordered pair: (bid, item). In the query result, NHi-
bernate represents an ordered pair as an array. Let’s discuss a full code example with
the result of such a query:

IQuery q = session.CreateQuery("from Item item join item.Bids bid");
foreach(object[] pair in q.List()) {
 Item item = (Item) pair[0];
 Bid bid = (Bid) pair[1];
}

Instead of an IList of Items, this query returns an IList of object[] arrays. At
index 0 is the Item, and at index 1 is the Bid. A particular Item may appear multi-
ple times, once for each associated Bid.

 This is all different from the case of a query with an eager fetch join. The query
with the fetch join returned an IList of Items, with initialized Bids collections.

 If you don’t want the Bids in the query result, you can specify a select clause in
HQL. This clause is optional (it isn’t optional in SQL), so you only have to use it when
you aren’t satisfied with the result returned by default. You use the alias in a select
clause to retrieve only the selected objects:

select item
from Item item
join item.Bids bid
 where item.Description like '%part%'
 and bid.Amount > 100

Now the generated SQL looks like this:

227Joining associations
select I.DESCRIPTION, I.CREATED, I.SUCCESSFUL_BID,
from ITEM I
inner join BID B on I.ITEM_ID = B.ITEM_ID
where I.DESCRIPTION like '%part%'
and B.AMOUNT > 100

The query result contains just Items, and because it’s an inner join, only Items that
have Bids:

IQuery q = session.CreateQuery("select i from Item i join i.Bids b");
foreach(Item item in q.List<Item>() {
 //...
}

As you can see, using aliases in HQL is the same for both direct classes and joined asso-
ciations. You assign aliases in the from clause and use them in the where and the
optional select clauses. The select clause in HQL is much more powerful; we discuss
it in detail later in this chapter.
ICRITERIA JOINS

There are two ways to express a join in the ICriteria API; hence there are two ways to
use aliases for restriction. The first is the CreateCriteria() method of the Criteria
interface. It means that you can nest calls to CreateCriteria():

ICriteria itemCriteria = session.CreateCriteria(typeof(Item));
itemCriteria.Add(Expression.Like("Description",
 "part",
 MatchMode.Anywhere));
ICriteria bidCriteria = itemCriteria.CreateCriteria("Bids");
bidCriteria.Add(Expression.Gt("Amount", 100));
IList results = itemCriteria.List();

You’ll usually write the query as follows, using method chaining:

IList results =
 session.CreateCriteria(typeof(Item))
 .Add(Expression.Like("Description", "part", MatchMode.Anywhere))
 .CreateCriteria("Bids")
 .Add(Expression.Gt("Amount", 100))
 .List();

The creation of an ICriteria instance for the Bids of the Item results in an inner join
between the tables of the two classes. Note that you may call List() on either ICrite-
ria instance without changing the query results.

 The second way to express this query using the ICriteria API is to assign an alias
to the joined entity:

IList results =
 session.CreateCriteria(typeof(Item))
 .CreateAlias("Bids", "bid")
 .Add(Expression.Like("Description", "%part%"))
 .Add(Expression.Gt("bid.Amount", 100))
 .List();

This approach doesn’t use a second instance of ICriteria; properties of the joined
entity must be qualified by the alias assigned in CreateAlias(). Properties of the root

228 CHAPTER 7 Retrieving objects efficiently
entity (Item) may be referred to without the qualifying alias or by using the alias
"this". Thus the following is equivalent:

IList results =
 session.CreateCriteria(typeof(Item))
 .CreateAlias("Bids", "bid")
 .Add(Expression.Like("this.Description", "%part%"))
 .Add(Expression.Gt("bid.Amount", 100)
 .List();

By default, a criteria query returns only the root entity—in this case, the Items—in the
query result. Let’s summarize with a full example:

IList<Item> results =
 session.CreateCriteria(typeof(Item))
 .CreateAlias("Bids", "bid")
 .Add(Expression.Like("this.Description", "%part%"))
 .Add(Expression.Gt("bid.Amount", 100))
 .List<Item>();
foreach(Item item in results) {
 // Do something
}

Keep in mind that the Bids collection of each Item isn’t initialized. A limitation of cri-
teria queries is that you can’t combine a CreateAlias with an eager fetch mode; for
example, SetFetchMode("Bids", FetchMode.Eager) isn’t valid.

 Sometimes you’d like a less verbose way to express a join. In NHibernate, you can
use an implicit association join.

7.3.4 Using implicit joins

So far, you’ve used simple qualified property names like bid.Amount and item.
Description in your HQL queries. HQL supports multipart property path expressions
for two purposes:

■ Querying components
■ Expressing implicit association joins

The first use is straightforward:

from User u where u.Address.City = 'Bangkok'

You express the parts of the mapped component Address with dot notation. This
usage is also supported by the ICriteria API:

session.CreateCriteria(typeof(User))
 .Add(Expression.Eq("Address.City", "Bangkok"));

The second usage, implicit association joining, is available only in HQL. Here’s an
example:

from Bid bid where bid.Item.Description like '%part%'

This results in an implicit join on the many-to-one associations from Bid to Item.
Implicit joins are always directed along many-to-one or one-to-one associations, never
through a collection-valued association (you can’t write item.Bids.Amount).

229Joining associations
 Multiple joins are possible in a single-property path expression. If the association
from Item to Category was many-to-one (instead of the current many-to-many), you
could write

from Bid bid where bid.Item.Category.Name like 'Laptop%'

We frown on the use of this syntactic sugar for more complex queries. Joins are impor-
tant, and especially when optimizing queries, you need to be able to see at a glance
how many of them there are. Consider the following query (again, using a many-to-
one from Item to Category):

from Bid bid
 where bid.Item.Category.Name like 'Laptop%'
 and bid.Item.SuccessfulBid.Amount > 100

How many joins are required to express this in SQL? Even if you get the answer right,
we bet it takes you more than a few seconds. The answer is three; the generated SQL
looks something like this:

select ...
from BID B
inner join ITEM I on B.ITEM_ID = I.ITEM_ID
inner join CATEGORY C on I.CATEGORY_ID = C.CATEGORY_ID
inner join BID SB on I.SUCCESSFUL_BID_ID = SB.BID_ID
where C.NAME like 'Laptop%'
and SB.AMOUNT > 100

It’s more obvious if you express the same query like this:

from Bid bid
join bid.Item item
 where item.Category.Name like 'Laptop%'
 and item.SuccessfulBid.Amount > 100

You can even be more verbose:

from Bid as bid
join bid.Item as item
join item.Category as cat
join item.SuccessfulBid as winningBid
 where cat.Name like 'Laptop%'
 and winningBid.Amount > 100

Let’s continue with join conditions using arbitrary attributes, expressed in theta style.

7.3.5 Theta-style joins

A Cartesian product lets you retrieve all possible combinations of instances of two or
more classes. This query returns all ordered pairs of Users and Category objects:

from User, Category

Obviously, this generally isn’t useful. There is one case where it’s commonly used:
theta-style joins.

 In traditional SQL, a theta-style join is a Cartesian product, together with a join
condition in the where clause, which is applied on the product to restrict the result. In

230 CHAPTER 7 Retrieving objects efficiently
HQL, the theta-style syntax is useful when your join condition isn’t a foreign-key rela-
tionship mapped to a class association. For example, suppose you store the User’s
name in log records instead of mapping an association from LogRecord to User. The
classes don’t “know” anything about each other, because they aren’t associated. You
can then find all the Users and their LogRecords with the following theta-style join:

from User user, LogRecord log where user.Username = log.Username

The join condition here is the username, presented as an attribute in both classes. If
both entities have the same username, they’re joined (with an inner join) in the result.
The query result consists of ordered pairs:

IList results = session.CreateQuery(
 @"from User user, LogRecord log
 where user.Username = log.Username"
)
 .List();
foreach(Object[] pair in results)
 User user = (User) pair[0];
 LogRecord log = (LogRecord) pair[1];
}

You can change the result by adding a select clause.
 You probably won’t need to use theta-style joins often. Note that the ICriteria API

doesn’t provide any means for expressing Cartesian products or theta-style joins. It’s
also currently not possible in NHibernate to outer-join two tables that don’t have a
mapped association.

7.3.6 Comparing identifiers

It’s extremely common to perform queries that compare primary key or foreign key
values to either query parameters or other primary or foreign key values. If you think
about this in more object-oriented terms, what you’re doing is comparing object refer-
ences. HQL supports the following:

from Item i, User u
 where i.Seller = u and u.Username = 'steve'

In this query, i.Seller refers to the foreign key to the USER table in the ITEM table
(on the SELLER_ID column), and User refers to the primary key of the USER table (on
the USER_ID column). This next query uses a theta-style join and is equivalent to the
much preferred ANSI style:

from Item i join i.Seller u
 where u.Username = 'steve'

On the other hand, the following theta-style join can’t be re-expressed as a from clause
join:

from Item i, Bid b
where i.Seller = b.Bidder

231Writing report queries
In this case, i.Seller and b.Bidder are both foreign keys of the USER table. Note
that this is an important query in the example application; you use it to identify peo-
ple bidding for their own items.

 You may also want to compare a foreign key value to a query parameter—for exam-
ple, to find all Comments from a User:

User givenUser = LoadUser(1)
IQuery q =
 session.CreateQuery("from Comment c where c.FromUser = :user");
q.SetEntity("user", givenUser);
IList results = q.List();

Alternatively, sometimes you may prefer to express these kinds of queries in terms of
identifier values rather than object references. You can refer to an identifier value by
either the name of the identifier property (if there is one) or the special property
name id. Every persistent entity class has this special HQL property, even if you don’t
implement an identifier property on the class (see section 3.5.2).

 These queries are equivalent to the previous queries:

from Item i, User u
 where i.Seller.id = u.id and u.Username = 'steve'
from Item i, Bid b
 where i.Seller.id = b.Bidder.id

But you can now use the identifier value as a query parameter:

long userId = 1;
IQuery q =
 session.CreateQuery("from Comment c where c.FromUser.id = :id");
 q.SetInt64("id", userId);
IList results = q.List();

You may have noticed that there is a world of difference between the following queries:

from Bid b where b.Item.id = 1
from Bid b where b.Item.Description like '%part%'

The second query uses an implicit table join; the first has no joins at all.
 We’ve now covered most of the features of NHibernate’s query facilities that are

commonly needed for retrieving objects for manipulation in business logic. In the
next section, we change our focus and discuss features of HQL that are used mainly
for analysis and reporting functionality.

7.4 Writing report queries
Report queries take advantage of the database’s ability to perform efficient grouping
and aggregation of data. They’re more relational in nature; they don’t always return
entities. For example, instead of retrieving complete Item entities, a report query may
only retrieve their names and prices. If this is the only information you need for a
report screen, you don’t need transactional entities and can save the small overhead
of automatic dirty checking and caching in the ISession.

232 CHAPTER 7 Retrieving objects efficiently
 Let’s consider the structure of an HQL query again:

[select ...] from ... [where ...]
 [group by ... [having ...]] [order by ...]

The only mandatory clause of an HQL query is the from clause; all other clauses are
optional. So far, we’ve discussed the from, where, and order by clauses. We also used
the select clause to declare which entities should be returned in a join query.

 In report queries, you use the select clause for projection and the group by and
having clauses for aggregation. Let’s look at what we mean by projection.

7.4.1 Projection

The select clause performs projection. It lets you specify which objects or properties
of objects you want in your query results. For example, as you’ve already seen, the fol-
lowing query returns ordered pairs of Items and Bids:

from Item item join item.Bids bid where bid.Amount > 100

If you only want the Items, you can use this query instead:

select item from Item item join item.Bids bid where bid.Amount > 100

Or, if you’re displaying a list page to the user, it may be adequate to retrieve a few
properties of those objects needed for that page:

select item.id, item.Description, bid.Amount
 from Item item join item.Bids bid
 where bid.Amount > 100

This query returns an array of objects for each row. Because there are three items in
the select clause, each object[] has 3 elements. Also, because it’s a report query, the
objects in the result aren’t NHibernate entities and therefore aren’t transactional.
Let’s execute the query with some code:

IList results = session.CreateQuery(
 @"select item.id, item.Description, bid.Amount
 from Item item join item.Bids bid
 where bid.Amount > 100"
)
.List();
foreach(Object[] row in results) {
 long id = (long) row[0];
 string description = (string) row[1];
 double amount = (double) row[2];
 // ... show values in a report screen
}

If you’re used to working with domain objects, this example will seem ugly and ver-
bose. NHibernate gives you another approach: dynamic instantiation.
USING DYNAMIC INSTANTIATION

If you find working with arrays of values a little cumbersome, NHibernate let’s you use
dynamic instantiation and define a class to represent each row of results. You can do
this using the HQL select new construct:

233Writing report queries
select new ItemRow(item.id, item.Description, bid.Amount)
 from Item item join item.Bids bid
 where bid.Amount > 100

The ItemRow class is one you’d write just for your report screen; note that you also
have to give it an appropriate constructor. This query returns newly instantiated (but
transient) instances of ItemRow, as you can see in the next example:

IList results = session.CreateQuery(
 @"select new ItemRow(item.id, item.Description, bid.Amount)
 from Item item join item.Bids bid
 where bid.Amount > 100"
)
.List();
foreach(ItemRow row in results) {
 // Do something
}

The custom ItemRow class doesn’t have to be a persistent class that has its own map-
ping file. But in order for NHibernate to “see” it, you need to import it using

<hibernate-mapping>
 <import class="ItemRow" />
</hibernate-mapping>

ItemRow is therefore only a data transfer class, useful in report generation.
GETTING DISTINCT RESULTS

When you use a select clause, the elements of the result are no longer guaranteed to
be unique. For example, Item descriptions aren’t unique, so the following query may
return the same description more than once:

select item.Description from Item item

It’s difficult to see how it can possibly be meaningful to have two identical rows in a query
result, so if you think duplicates are likely, you should use the distinct keyword:

select distinct item.Description from Item item

This eliminates duplicates from the returned list of Item descriptions.
CALLING SQL FUNCTIONS

You may recall that you can call database-specific SQL functions in the where clause.
It’s also possible, at least for some NHibernate SQL dialects, to call database-specific
SQL functions from the select clause. For example, the following query retrieves the
current date and time from the database server (SQL Server syntax), together with a
property of Item:

select item.StartDate, getdate() from Item item

The technique of database functions in the select clause isn’t limited to database-
dependent functions. You can use it with other, more generic (or standardized) SQL
functions as well:

select item.StartDate, item.EndDate, upper(item.Name)
 from Item item

234 CHAPTER 7 Retrieving objects efficiently
This query returns an object[] with the starting and ending date of an item auction,
and the name of the item all in uppercase.

 Let’s now look at calling SQL aggregate functions.

7.4.2 Using aggregation

NHibernate recognizes the following aggregate functions: count(), min(), max(),
sum(), and avg().
This query counts all the Items:

select count(*) from Item

The result is returned as an Integer:

int count =
 (int) session.CreateQuery("select count(*) from Item")
 .UniqueResult();

Notice how you use *, which has the same semantics as in SQL.
The next variation of the query counts all Items that have a successfulBid:

select count(item.SuccessfulBid) from Item item

This query calculates the total of all the successful Bids:

select sum(item.SuccessfulBid.Amount) from Item item

The query returns a value of the same type as the summed elements; in this case
double. Notice the use of an implicit join in the select clause: you navigate the associ-
ation (SuccessfulBid) from Item to Bid by referencing it with a dot.

 The next query returns the minimum and maximum bid amounts for a particular
Item:

select min(bid.Amount), max(bid.Amount)
 from Bid bid where bid.Item.id = 1

The result is an ordered pair of doubles (two instances of double in an object[] array).
 The special count(distinct) function ignores duplicates:

select count(distinct item.Description) from Item item

When you call an aggregate function in the select clause without specifying any group-
ing in a group by clause, you collapse the result down to a single row containing your
aggregated value(s). This means (in the absence of a group by clause) that any select
clause that contains an aggregate function must contain only aggregate functions.

 For more advanced statistics and reporting, you’ll need to be able to perform
grouping.

7.4.3 Grouping

Just like in SQL, any property or alias that appears in HQL outside of an aggregate
function in the select clause must also appear in the group by clause.

235Writing report queries
 Consider the next query, which counts the number of users with each particular
last name:

select u.Lastname, count(u) from User u
 group by u.Lastname

Now look at the generated SQL:

select U.LAST_NAME, count(U.USER_ID)
 from USER U
 group by U.LAST_NAME

In this example, the u.Lastname isn’t inside an aggregate function; you use it to group
the result. You also don’t need to specify the property you’d like to count in HQL. The
generated SQL will automatically use the primary key if you use an alias that has been
set in the from clause.

 The next query finds the average bid amount for each item:

select bid.Item.id, avg(bid.Amount) from Bid bid
group by bid.Item.id

This query returns ordered pairs of Item identifiers and average bid amount. Notice
how you use the id special property to refer to the identifier of a persistent class no
matter what the identifier’s real property name is.

 The next query counts the number of bids and calculates the average bid per
unsold item:

select bid.Item.id, count(bid), avg(bid.Amount)
 from Bid bid
 where bid.Item.SuccessfulBid is null
 group by bid.Item.id

This query uses an implicit association join. For an explicit ordinary join in the from
clause (not a fetch join), you can re-express it as follows:

select bidItem.id, count(bid), avg(bid.Amount)
 from Bid bid
 join bid.Item bidItem
 where bidItem.SuccessfulBid is null
 group by bidItem.id

To initialize the bids collection of the Items, you can use a fetch join and refer to the
associations starting on the other side:

select item.id, count(bid), avg(bid.Amount)
 from Item item
 fetch join item.Bids bid
 where item.SuccessfulBid is null
 group by item.id

Sometimes, you’ll want to further restrict the result by selecting only particular values
of a group.

236 CHAPTER 7 Retrieving objects efficiently
7.4.4 Restricting groups with having

The where clause is used to perform the relational operation of restriction on rows.
The having clause performs restriction on groups.

 For example, the next query counts users with each last name that begins with K:

select user.Lastname, count(user)
 from User user
 group by user.Lastname
 having user.Lastname like 'K%'

The same rules govern the select and having clauses: only grouped properties may
appear outside an aggregate function. The next query counts the number of bids per
unsold item, returning results only for those items that have more than 10 bids:

select item.id, count(bid), avg(bid.Amount)
 from Item item
 join item.Bids bid
 where item.SuccessfulBid is null
 group by item.id
 having count(bid) > 10

Most report queries use a select clause to choose a list of projected or aggregated
properties. You’ve seen that when more than one property or alias is listed in the
select clause, NHibernate returns the query results as tuples: each row of the query
result list is an instance of object[]. Tuples are inconvenient and non-typesafe, so
NHibernate provides the select new constructor, as mentioned earlier. You can create
new objects dynamically with this technique and also use it in combination with aggre-
gation and grouping.

 If you define a class called ItemBidSummary with a constructor that takes a long, a
string, and an int, you can use the following query:

select new ItemBidSummary(bid.Item.id, count(bid), avg(bid.Amount))
 from Bid bid
 where bid.item.SuccessfulBid is null
 group by bid.Item.id

In the result of this query, each element is an instance of ItemBidSummary, which is a
summary of an Item, the number of bids for that item, and the average bid amount.
This approach is typesafe, and a data transfer class such as ItemBidSummary can easily
be extended for special formatted printing of values in reports.

7.4.5 Improving performance with report queries

Report queries can have an impact on the performance of your application. Let’s
explore this issue in more depth.

 The only time we’ve seen any significant overhead in NHibernate code compared
to direct ADO.NET queries—and then only for unrealistically simple test cases—is in
the special case of read-only queries against a local database. It’s possible for a data-
base to completely cache query results in memory and respond quickly, so bench-
marks are generally useless if the dataset is small: plain SQL and ADO.NET are always
the fastest option.

237Writing report queries
 On the other hand, even with a small result set, NHibernate must still do the work
of adding the resulting objects of a query to the ISession cache (perhaps also the sec-
ond-level cache) and manage uniqueness, and so on. Report queries give you a way to
avoid the overhead of managing the ISession cache. The overhead of an NHibernate
report query compared to direct SQL/ADO.NET isn’t usually measurable, even in
unrealistic extreme cases like loading one million objects from a local database with-
out network latency.

 Report queries using projection in HQL let you specify exactly which properties
you wish to retrieve. For report queries, you aren’t selecting entities, but only proper-
ties or aggregated values:

select user.Lastname, count(user)
 from User user
 group by user.Lastname

This query doesn’t return a persistent entity, so NHibernate doesn’t add a transac-
tional object to the ISession cache. Furthermore, NHibernate won’t track changes to
these returned objects.

 Reporting queries result in faster release of allocated memory, because objects
aren’t kept in the ISession cache until the ISession is closed—they may be garbage
collected as soon as they’re dereferenced by the application, after executing the report.

 These considerations are almost always extremely minor, so don’t go out and
rewrite all your read-only transactions to use report queries instead of transactional,
cached, and monitored objects. Report queries are more verbose and (arguably) less
object oriented. They also make less efficient use of NHibernate’s caches, which is
much more important once you consider the overhead of remote communication
with the database in production systems. We follow the “don’t optimize prematurely”
wisdom, and we urge you to wait until you find an actual case where you have a real
performance problem before using this optimization.

7.4.6 Obtaining DataSets

It may happen that you have to interact with a component using DataSets. Many
report engines, like Crystal Reports, have limited support for POCO (but which may
be enough). Their common data source is either the database directly or a DataSet.
But because NHibernate doesn’t return DataSets, you have to find a solution.

 The most common workaround is to directly use ADO.NET to get the DataSet. This
solution may fit in many situations, but it doesn’t take advantage of NHibernate fea-
tures and requires careful monitoring of possible changes because they can make NHi-
bernate caches stale.

 Another solution is to use NHibernate to query data and fill a DataSet with the
result. This operation can be done manually by writing code similar to that required
for DTOs, but it becomes tedious when you’re dealing with numerous entities. In this
case, code generation can help greatly simplify the process.

 Now, let’s get back to regular entity queries. There are still many NHibernate fea-
tures waiting to be discovered.

238 CHAPTER 7 Retrieving objects efficiently
7.5 Advanced query techniques
You’ll use advanced query techniques less frequently with NHibernate, but it will be
helpful to know about them. In this section, we discuss programmatically building cri-
teria with example objects, a topic we briefly introduced earlier.

 Filtering collections is also a handy technique: you can use the database instead of
filtering objects in memory. Subqueries and queries in native SQL will round out your
knowledge of NHibernate query techniques.

7.5.1 Dynamic queries

It’s common for queries to be built programmatically by combining several optional
query criteria depending on user input. For example, a system administrator may
wish to search for users by any combination of first name or last name, and to
retrieve the result ordered by username. Using HQL, you can build the query using
string manipulations:

public IList<User> FindUsers(string firstname,
 string lastname) {
 StringBuilder queryString = new StringBuilder();
 bool conditionFound = false;
 if (firstname != null) {
 queryString.Append("lower(u.Firstname) like :firstname ");
 conditionFound=true;
 }
 if (lastname != null) {
 if (conditionFound) queryString.Append("and ");
 queryString.Append("lower(u.Lastname) like :lastname ");
 conditionFound=true;
 }
 string fromClause = conditionFound ?
 "from User u where " :
 "from User u ";
 queryString.Insert(0, fromClause).Append("order by u.username");
 IQuery query = GetSession().CreateQuery(queryString.ToString());
 if (firstname != null)
 query.SetString("firstname",
 '%' + firstname.ToLower() + '%');
 if (lastname != null)
 query.SetString("lastname",
 '%' + lastname.ToLower() + '%');
 return query.List<User>();
}

This code is tedious and noisy, so let’s try a different approach. The ICriteria API
looks promising:

public IList<User> FindUsers(string firstname,
 string lastname) {
 ICriteria crit = GetSession().CreateCriteria(typeof(User));
 if (firstname != null) {
 crit.Add(Expression.InsensitiveLike("Firstname",
 firstname,
 MatchMode.Anywhere));

239Advanced query techniques
 }
 if (lastname != null) {
 crit.Add(Expression.InsensitiveLike("Lastname",
 lastname,
 MatchMode.Anywhere));
 }
 crit.AddOrder(Order.Asc("Username"));
 return crit.List<User>();
}

This code is much shorter and more readable. Note that the InsensitiveLike()
operator performs a case-insensitive match. There seems no doubt that this is a better
approach. But for search screens with many optional search criteria, there is an even
better way.

 First, observe that as you add new search criteria, the parameter list of FindUsers()
grows. It would be better to capture the searchable properties as an object. Because all
the search properties belong to the User class, why not use an instance of User?

 QBE (Query by Example) uses this idea; you provide an instance of the queried
class with some properties initialized, and the query returns all persistent instances
with matching property values. NHibernate implements QBE as part of the ICriteria
query API:

public IList<User> FindUsers(User u) {
 Example exampleUser =
 Example.Create(u).IgnoreCase().EnableLike(MatchMode.Anywhere);
 return GetSession().CreateCriteria(typeof(User))
 .Add(exampleUser)
 .List<User>();
}

The call to Create() returns a new instance of Example for the given instance of User.
The IgnoreCase() method puts the example query into a case-insensitive mode for all
string-valued properties. The call to EnableLike() specifies that the SQL like opera-
tor should be used for all string-valued properties and specifies a MatchMode.

 You’ve significantly simplified the code again. The nicest thing about NHibernate
Example queries is that an Example is just an ordinary ICriterion. You can freely mix
and match QBE with QBC.

 Let’s see how this works by further restricting the search results to users with
unsold Items. For this purpose, you add an ICriteria to the example user, constrain-
ing the result using its Items collection of Items:

public IList<User> FindUsers(User u) {
 Example exampleUser =
 Example.Create(u).IgnoreCase().EnableLike(MatchMode.Anywhere);
 return GetSession().CreateCriteria(typeof(User))
 .Add(exampleUser)
 .CreateCriteria("Items")
 .Add(Expression.IsNull("SuccessfulBid"))
 .List<User>();
}

240 CHAPTER 7 Retrieving objects efficiently
Even better, you can combine User properties and Item properties in the same search:

public IList<User> FindUsers(User u, Item i) {
 Example exampleUser =
 Example.Create(u).IgnoreCase().EnableLike(MatchMode.Anywhere);
 Example exampleItem =
 Example.Create(i).IgnoreCase().EnableLike(MatchMode.Anywhere);
 return GetSession().CreateCriteria(typeof(User))
 .Add(exampleUser)
 .CreateCriteria("Items")
 .Add(exampleItem)
 .List<User>();
}

At this point, we invite you to step back and consider how much code would be
required to implement this search screen using hand-coded SQL/ADO.NET. It’s a lot:
if we listed it here, it would stretch for pages.

7.5.2 Collection filters

You’ll commonly want to execute a query against all elements of a particular collec-
tion. For instance, you may have an Item and wish to retrieve all bids for that item,
ordered by the amount of the bid. You already know one good way to write this query:

IList results =
 session.CreateQuery(@"from Bid b where b.Item = :item
 order by b.Amount asc")
 .SetEntity("item", item)
 .List();

This query works perfectly, because the association between bids and items is bidirec-
tional and each Bid knows its Item. Imagine that this association was unidirectional:
Item has a collection of Bids, but there is no inverse association from Bid to Item.

 You can try the following query:

string query = @"select bid from Item item join item.Bids bid
 where item = :item order by bid.Amount asc";
IList results = session.CreateQuery(query)
 .SetEntity("item", item)
 .List();

This query is inefficient—it uses an unnecessary join. A better, more elegant solution
is to use a collection filter: a special query that can be applied to a persistent collec-
tion or array. It’s commonly used to further restrict or order a result. You use it on an
already loaded Item and its collection of bids:

IList results = session.CreateFilter(item.Bids,
 "order by this.Amount asc")
 .List();

This filter is equivalent to the first query shown earlier and results in identical SQL.
Collection filters have an implicit from clause and an implicit where condition. The
alias this refers implicitly to elements of the collection of bids.

241Advanced query techniques
 NHibernate collection filters aren’t executed in memory. The collection of bids
may be uninitialized when the filter is called and, if so, will remain uninitialized. Fur-
thermore, filters don’t apply to transient collections or query results; they may only be
applied to a persistent collection currently referenced by an object associated with the
NHibernate session.

 The only required clause of an HQL query is from. Because a collection filter has
an implicit from clause, the following is a valid filter:

IList results = session.CreateFilter(item.Bids, "").List();

To the great surprise of everyone (including the designer of this feature), this trivial
filter turns out to be useful! You can use it to paginate collection elements:

IList results = session.CreateFilter(item.Bids, "")
 .SetFirstResult(50)
 .SetMaxResults(25)
 .List();

But usually you’ll use an order by with paginated queries.
 Even though you don’t need a from clause in a collection filter, you can include

one if you like. A collection filter doesn’t even need to return elements of the collec-
tion being filtered. The next query returns any Category with the same name as a cat-
egory in the given collection:

string filterString =
 "select other from Category other where this.Name = other.Name";
IList results =
 session.CreateFilter(cat.ChildCategories, filterString)
 .List();

The following query returns a collection of Users who have bid on the item:

IList results =
 session.CreateFilter(item.Bids,
 "select this.Bidder")
 .List();

The next query returns all these users’ bids (including those for other items):

IList results = session.CreateFilter(
 item.Bids,
 "select elements(this.Bidder.Bids)")
 .List();

Note that the query uses the special HQL elements() function (explained later) to
select all elements of a collection.

 The most important reason for the existence of collection filters is to allow the
application to retrieve some elements of a collection without initializing the entire
collection. In the case of large collections, this is important to achieve acceptable per-
formance. The following query retrieves all bids made by a user in the past week:

IList results =
 session.CreateFilter(user.Bids,

242 CHAPTER 7 Retrieving objects efficiently
 "where this.Created > :oneWeekAgo")
 .SetDateTime("oneWeekAgo", DateTime.Now.AddDays(-7)
 .List();

Again, this query doesn’t initialize the Bids collection of the User.

7.5.3 Subqueries

Subselects are an important and powerful feature of SQL. A subselect is a select query
embedded in another query, usually in the select, from, or where clause.

 HQL supports subqueries in the where clause. We can’t think of many good uses
for subqueries in the from clause, although select clause subqueries may be a nice
future extension. (You may remember from section 3.4.2 that a derived property map-
ping is a select clause subselect.) Note that some database platforms supported by
NHibernate don’t implement subselects. If you desire portability among many differ-
ent databases, you shouldn’t use this feature.

 The result of a subquery may contain either a single row or multiple rows. Typi-
cally, subqueries that return single rows perform aggregation. The following subquery
returns the total number of items sold by a user; the outer query returns all users who
have sold more than 10 items:

from User u where 10 < (
 select count(i) from u.Items i where i.SuccessfulBid is not null
)

This is a correlated subquery—it refers to an alias (u) from the outer query. The next
subquery is an uncorrelated subquery:

from Bid bid where bid.Amount + 1 >= (
 select max(b.Amount) from Bid b
)

The subquery in this example returns the maximum bid amount in the entire system;
the outer query returns all bids whose amount is within one (dollar) of that amount.

 Note that in both cases, the subquery is enclosed in parentheses. This is always
required.

 Uncorrelated subqueries are harmless; there is no reason not to use them when
convenient, although they can always be rewritten as two queries (after all, they don’t
reference each other). You should think more carefully about the performance
impact of correlated subqueries. On a mature database, the performance cost of a
simple correlated subquery is similar to the cost of a join. But it isn’t necessarily possi-
ble to rewrite a correlated subquery using several separate queries.

 If a subquery returns multiple rows, it’s combined with quantification. ANSI SQL
(and HQL) defines the following quantifiers:

■ any
■ all
■ some (a synonym for any)
■ in (a synonym for = any)

243Native SQL
For example, the following query returns items where all bids are less than 100:

from Item item where 100 > all (select b.Amount from item.Bids b)

The next query returns all items with bids greater than 100:

from Item item where 100 < any (select b.Amount from item.Bids b)

This query returns items with a bid of exactly 100:

from Item item where 100 = some (select b.Amount from item.Bids b)

So does this one:

from Item item where 100 in (select b.Amount from item.Bids b)

HQL supports a shortcut syntax for subqueries that operate on elements or indices of
a collection. The following query uses the special HQL elements() function:

IList list = session.CreateQuery(@"from Category c
 where :item in elements(c.Items)")
 .SetEntity("item", item)
 .List();

The query returns all categories to which the item belongs and is equivalent to the fol-
lowing HQL, where the subquery is more explicit:

IList results = session.CreateQuery(@"from Category c
 where :item in (from c.Items)")
 .SetEntity("item", item)
 .List();

Along with elements(), HQL provides indices(), maxelement(), minelement(), max-
index(), minindex(), and size(), each of which is equivalent to a certain correlated
subquery against the passed collection. Refer to the NHibernate documentation for
more information about these special functions; they’re rarely used.

 Subqueries are an advanced technique; you should question their frequent use,
because queries with subqueries can often be rewritten using only joins and aggrega-
tion. But they’re powerful and useful from time to time.

 By now, we hope you’re convinced that NHibernate’s query facilities are flexible,
powerful, and easy to use. HQL provides almost all the functionality of ANSI standard
SQL. Of course, on rare occasions you do need to resort to handcrafted SQL, espe-
cially when you wish to take advantage of database features that go beyond the func-
tionality specified by the ANSI standard.

7.6 Native SQL
We can think of some good examples why you may use native SQL queries in NHibernate:
HQL provides no mechanism for specifying SQL query hints; it also doesn’t support hier-
archical queries (such as the Oracle CONNECT BY clause); and you may need to quickly
port SQL code to your application. We suppose you’ll stumble on other examples.

 In these relatively rare cases, you’re free to resort to using the ADO.NET API
directly. But doing so means writing the tedious code by hand to transform the result

244 CHAPTER 7 Retrieving objects efficiently
of the query to an object graph. You can avoid all this work by using NHibernate’s
built-in support for native SQL queries.

 NHibernate lets you execute arbitrary SQL queries to retrieve scalar values or even
entities. These queries can be written in your C# code or in your mapping files. In the
latter case, it’s also possible to call stored procedures. You can even override the SQL
commands that NHibernate generates for the CRUD operations. All these techniques
will be covered in the following pages.

7.6.1 Using the ISQLQuery API

ISQLQuery instances are created by calling the method ISession.CreateSQLQuery(),
passing in a SQL query string. Then you can use the methods of ISQLQuery to provide
more details about your query.

 A SQL query can return scalar values from individual columns, a complete entity
(along with its associations and collections), or multiple entities. It also supports all
the features of HQL queries, which means you can use parameters, paging, and so on.
SCALAR AND ENTITY QUERIES

The simplest native queries are scalar queries. Here’s an example:

Ilist results = session.CreateSQLQuery("SELECT * FROM ITEM")
 .AddScalar("ITEM_ID", NHibernateUtil.Int64)
 .AddScalar("NAME", NHibernateUtil.String)
 .AddScalar("CREATED", NHibernateUtil.Date)
 .List();

This query won’t return Item objects; instead, it returns the specified columns of all
items as arrays of objects (object[]). These columns override the * in the SELECT.

 If you want to retrieve entities, you can do this:

Ilist<Item> results = session.CreateSQLQuery("SELECT * FROM ITEM")
 .AddEntity(typeof(Item))
 .List<Item>();

You may also manage associations and collections by joining them. Let’s see how you
can eagerly load the items with their sellers:

Ilist<Item> results = session.CreateSQLQuery(
 @"SELECT ITEM_ID, NAME, CREATED, SELLER_ID, ...
 USER_ID, FIRSTNAME, ...
 FROM ITEM i, USER u,
 WHERE i.SELLER_ID = u.USER_ID")
 .AddEntity("item", typeof(Item))
 .AddJoin("item.Seller")
 .List<Item>();

In this case, the query is more complex because you must specify the columns of both
tables. You must also specify the alias "item" in AddEntity() in order to join its Seller.
Here is how you can try to join the Bids collection of the items:

Ilist<Item> results = session.CreateSQLQuery(
 @"SELECT i.ITEM_ID, NAME, CREATED, ...

245Native SQL
 BID_ID, CREATED, b.ITEM_ID, ...
 FROM ITEM i, BID b,
 WHERE i.ITEM_ID = b.ITEM_ID")
 .AddEntity("item", typeof(Item))
 .AddJoin("item.Bids")
 .List<Item>();

This query is similar to the previous one. A good knowledge of SQL is enough to write
it and take care of the ambiguous column name ITEM_ID. But unfortunately, this
won’t work in NHibernate; it doesn’t recognize i.ITEM_ID because it isn’t specified
like that in the mapping file or attributes.

 It’s time to introduce a new trick that addresses this problem. We demonstrate this
in the next section, which explains how to retrieve many entity types in a single query.
MULTIPLE-ENTITY QUERIES

Querying more than one entity increases the chance of having column-name duplica-
tions. Thankfully, this problem is simple to solve using placeholders.

 Placeholders are necessary because a SQL query result may return the state of mul-
tiple entity instances in each row, or even the state of multiple instances of the same
entity. You need a way to distinguish between the different entities. NHibernate uses its
own naming scheme, where column aliases are placed in the SQL to correctly map col-
umn values to the properties of particular instances. But when you’re using your own
SQL, you don’t want the user to have to understand all this. Instead, you can specify
native SQL queries with placeholders for the column aliases, which are much simpler.

 The following native SQL query shows what these placeholders—the names
enclosed in braces—look like:

Ilist<Item> results = session.CreateSQLQuery(
 @"SELECT i.ITEM_ID as {item.id},
 i.NAME as {item.Name},
 i.CREATED as {item.Created}, ...
 FROM ITEM i")
 .AddEntity("item", typeof(Item))
 .List<Item>();

Each placeholder specifies an HQL-style property name. And you must provide the
entity class that is referred to by item in the placeholders.

 Here’s a shortcut, if you don’t want to specify every column explicitly:

Ilist<Item> results = session.CreateSQLQuery(
 @"SELECT {item.*}
 FROM ITEM")
 .AddEntity("item", typeof(Item))
 .List<Item>();

The {item.*} placeholder is replaced with a list of the mapped column names and
correct column aliases for all properties of the Item entity.

 Now, let’s see how you can return multiple entities:

Ilist results = session.CreateSQLQuery(
 @"SELECT {item.*}, {user.*}

246 CHAPTER 7 Retrieving objects efficiently
 FROM ITEM i INNER JOIN USER u
 ON i.SELLER_ID = u.USER_ID")
 .AddEntity("item", typeof(Item))
 .AddEntity("user", typeof(User))
 .List();

This query returns tuples of entities; as usual, NHibernate represents a tuple as an
instance of object[].

 As with HQL, it’s usually recommended that you keep these queries out of your
code by writing them in your mappings, as discussed next.

7.6.2 Named SQL queries

Named SQL queries are queries defined in NHibernate mapping files. Here is how you
can rewrite the previous example:

<sql-query name="FindItemsAndSellers">
 <return alias="item" class="Item"/>
 <return alias="user" class="User"/>
 <![CDATA[
 SELECT {item.*}, {user.*}
 FROM ITEM i INNER JOIN USER u
 ON i.SELLER_ID = u.USER_ID
]]>
</sql-query>

This named query can be executed from code as follows:

IList results = session.GetNamedQuery("FindItemAndSellers")
 .List();

Comparing the named query to the inline version discussed previously, you can see
that the <return> element replaces the method AddEntity(). <return-join> is used
for associations and collections, and <return-scalar> returns scalar values. You may
also load a collection only using <load-collection>.

 If you frequently return the same information, you can externalize it using
<resultset>. Here is a complete example:

<resultset name="FullItem">
 <return alias="item" class="Item"/>
 <return-join alias="user" property="item.Seller"/>
 <return-join alias="bid" property="item.Bids"/>
 <return-scalar column="diff" type="int"/>
</resultset>
<sql-query name="FindItemsWithSellersAndBids" resultset-ref="FullItem">
 <![CDATA[
 SELECT {item.*}, {user.*}, {bid.*},
 i.RESERVE_PRICE–i.INITIAL_PRICE as diff
 FROM ITEM i
 INNER JOIN USER u ON i.SELLER_ID = u.USER_ID
 LEFT OUTER JOIN BID b ON i.ITEM_ID = b.ITEM_ID
]]>
</sql-query>

247Native SQL
When executed, this query returns tuples containing an item with its seller and bids
and a computed scalar value (diff). Note that you can also refer to <resultset> ele-
ments in code using the method ISQLQuery.SetResultSetMapping().

 Named SQL queries allow you to avoid the {} syntax and define your own column
aliases. Here is a simple example:

<sql-query name="FindItems">
 <return alias="item" class="Item">
 <return-property name="Name" column="MY_NAME"/>
 <return-property name="InitialPrice">
 <return-column name="MY_ITEM_PRICE_VALUE"/>
 <return-column name="MY_ITEM_PRICE_CURRENCY"/>
 </return-property>
 </return>
 <![CDATA[
 SELECT i.ITEM_ID as {item.id}, ...
 i.NAME as MY_NAME,
 i.INITIAL_PRICE as MY_ITEM_PRICE_VALUE,
 i.INITIAL_PRICE_CURRENCY as MY_ITEM_PRICE_CURRENCY,
 FROM ITEM i
]]>
</sql-query>

In this example, you also use the {} syntax for columns you don’t want to customize.
In section 6.1.2, you defined an item’s initial price as a composite user type; this exam-
ple shows how to load it.

 Because the native SQL is tightly coupled to the actual mapped tables and col-
umns, we strongly recommend that you define all native SQL queries in the mapping
document instead of embedding them in the C# code.
USING STORED PROCEDURES

NHibernate-named SQL queries can call stored procedures and functions since
version 1.2.0. Suppose you create a stored procedure like this (using a SQL Server
database):

CREATE PROCEDURE FindItems_SP AS
 SELECT ITEM_ID, NAME, INITIAL_PRICE, INITIAL_PRICE_CURRENCY, ...
 FROM ITEM

You can call it using this query:

<sql-query name="FindItems">
 <return alias="item" class="Item">
 <return-property name="id" column="ITEM_ID "/>
 <return-property name="Name" column="NAME"/>
 <return-property name="InitialPrice">
 <return-column name="INITIAL_PRICE "/>
 <return-column name="INITIAL_PRICE_CURRENCY"/>
 </return-property>
 ...
 </return>
 exec FindItems_SP
</sql-query>

248 CHAPTER 7 Retrieving objects efficiently
Unlike the previous example, you must map all properties here; this is obvious,
because NHibernate can’t inject its own column aliases.

 Note that the stored procedure must return a resultset to be able to work with NHi-
bernate. Another limitation is that associations and collections aren’t supported; a
SQL query calling a stored procedure can only return scalar values and entities.

 Finally, stored procedures are database-dependent. Therefore, the mapping for a
SQL Server database may not be the same as for an Oracle database.

 If, in some special cases, you need even more control over the SQL that is exe-
cuted, or if you want to call a stored procedure that isn’t supported, NHibernate offers
you a way to get an ADO.NET connection. The property session.Connection returns
the currently active ADO.NET IDbConnection from the ISession. It’s not your respon-
sibility to close this connection, just to execute whatever SQL statements you like and
then continue using the ISession (and finally, close the ISession). The same is true
for transactions; you must not commit or roll back this connection yourself (unless
you completely manage the connection for NHibernate).

7.6.3 Customizing create, retrieve, update, and delete commands

In most cases, the commands generated by NHibernate to save your entities are
acceptable. But it may happen that you need to perform a specific operation and over-
ride NHibernate’s generated SQL. NHibernate lets you specify the SQL statements for
create, retrieve, update, and delete operations.

 The custom commands are written in the mapping of the concerned class. For
example:

<class name="Item">
 ...
 <sql-insert>
 INSERT INTO ITEM (NAME, ..., ITEM_ID) VALUES (UPPER(?), ..., ?)
 </sql-insert>
 <sql-update>UPDATE ITEM SET NAME=UPPER(?), ...
 WHERE ITEM_ID=?</sql-update>
 <sql-delete>exec DeleteItem_SP ?</sql-delete>
</class>

In this example, <sql-insert> and <sql-update> respectively save and update an
item with a custom logic (converting names to uppercase). And as you can see in
<sql-delete>, these custom commands can also call stored procedures. In this last
case, the order of the positional parameters must be respected (as you can see here,
the identifier is generally the last parameter). The order is defined by NHibernate;
you can read it by enabling debug logging and reading the static SQL commands
that are generated by NHibernate (remember to do that before writing these cus-
tom commands).

 Note that the custom <sql-insert> will be ignored if you use identity to generate
identifier values for the class. Your custom commands are required to affect the same
number of rows as NHibernate-generated SQL would. You can disable this verification
by adding check="none" to your commands. Also, for NHibernate 1.2, it isn’t possible
to supply named parameters such as ITEM_ID = :id for these insert/update SQL queries.

249Optimizing object retrieval
 Retrieve commands are defined as named queries. For example, here is a query to
load an item with a pessimistic lock:

<sql-query name="LoadItem">
 <return alias="item" class="Item" lock-mode="upgrade"/>
 SELECT {item.*}
 FROM ITEM
 WHERE ITEM_ID = ?
 FOR UPDATE
</sql-query>

Then it must be referenced in the mapping:

<class name="Item">
 ...
 <loader query-ref="LoadItem"/>
</class>

It’s also possible to customize how a collection should be loaded. In this case, the
named query will use the <load-collection> tag. Here is an example for the Bids
collection of Item:

<sql-query name="LoadItemBids">
 <load-collection alias="bid" role="Item.Bids"/>
 SELECT {bid.*}
 FROM BID
 WHERE ITEM_ID = :id
</sql-query>

Here is how it’s referenced:

<bag name="Bids" ...>
 ...
 <loader query-ref="LoadItemBids"/>
</bag>

When you’re writing queries and testing them in your application, you may encounter
one of the common performance issues with ORM. Fortunately, you know how to
avoid (or, at least, limit) their impact. This process is called optimizing object retrieval.
Let’s walk through the most common issues.

7.7 Optimizing object retrieval
Performance-tuning your application should first include the most obvious settings,
such as the best fetching strategies and use of proxies, as shown in chapter 4. Note
that we consider enabling the second-level cache to be the last optimization you
should usually make.

 The fetch joins, part of the runtime fetching strategies, as introduced in this chap-
ter, deserve some extra attention. But some design issues can’t be resolved by tuning;
they can only be avoided if possible.

7.7.1 Solving the n+1 selects problem

The biggest performance killer in applications that persist objects to SQL databases is
the n+1 selects problem. When you tune the performance of an NHibernate applica-
tion, this problem is the first thing you’ll usually need to address.

250 CHAPTER 7 Retrieving objects efficiently
 It’s normal (and recommended) to map almost all associations for lazy initializa-
tion. This means you generally set all collections to lazy="true" and change some of
the one-to-one and many-to-one associations to not use outer joins by default. This is
the only way to avoid retrieving all objects in the database in every transaction. Unfor-
tunately, this decision exposes you to the n+1 selects problem. It’s easy to understand
this problem by considering a simple query that retrieves all Items for a particular user:

IList<Item> results = session.CreateCriteria(typeof(Item))
 .Add(Expression.Eq("item.Seller", user))
 .List<Item>();

This query returns a list of items, where each collection of bids is an uninitialized col-
lection wrapper. Suppose you now wish to find the maximum bid for each item. The
following code would be one way to do this:

IList maxAmounts = new ArrayList();
foreach(Item item in results) {
 double maxAmount = 0;
 foreach (Bid bid in item.Bids) {
 if(maxAmount < bid.Amount)
 maxAmount = bid.Amount;
 }
 maxAmounts.Add(new MaxAmount(item.Id, maxAmount));
}

But there is a huge problem with this solution (aside from the fact that this would be
much better executed in the database using aggregation functions): each time you
access the collection of bids, NHibernate must fetch this lazy collection from the data-
base for each item. If the initial query returns 20 items, the entire transaction
requires 1 initial select that retrieves the items plus 20 additional selects to load
the bids collections of each item. This may easily result in unacceptable latency in a
system that accesses the database across a network. Usually, you don’t explicitly create
such operations, because you should quickly see that doing so is suboptimal. But the
n+1 selects problem is often hidden in more complex application logic, and you may
not recognize it by looking at a single routine.

 The first attempt to solve this problem may be to enable batch fetching. You
change your mapping for the bids collection to look like this:

<set name="bids" lazy="true" inverse="true" batch-size="10">

With batch fetching enabled, NHibernate prefetches the next 10 items when the col-
lection is first accessed. This reduces the problem from n+1 selects to n/10 + 1 selects.
For many applications, this may be sufficient to achieve acceptable latency. On the
other hand, it also means that in some other transactions, collections are fetched
unnecessarily. It isn’t the best you can do in terms of reducing the number of round
trips to the database.

 A much, much better solution is to take advantage of HQL aggregation and per-
form the work of calculating the maximum bid on the database. Thus you avoid the
problem:

251Optimizing object retrieval
string query = @"select new MaxAmount(item.id, max(bid.Amount))
 from Item item join item.Bids bid"
 where item.Seller = :user group by item.id";
IList maxAmounts = session.CreateQuery(query)
 .SetEntity("user", user)
 .List();

Unfortunately, this isn’t a complete solution to the generic issue. In general, you may
need to do more complex processing on the bids than merely calculating the maxi-
mum amount. It’s better to do this processing in the .NET application.

 You can try enabling eager fetching at the level of the mapping document:

<set name="Bids" lazy="false" inverse="true" outer-join="true">

The outer-join attribute is available for collections and other associations. It forces
NHibernate to load the association eagerly, using a SQL outer join. You may also use the
fetch attribute; fetch="select" is equivalent to outer-join="false", and fetch=
"join" is equivalent to outer-join="true". (Note that, as previously mentioned, HQL
queries ignore the outer-join attribute; but you may be using a criteria query.)

 This mapping avoids the problem as far as this transaction is concerned; you’re
now able to load all bids in the initial select. Unfortunately, any other transaction that
retrieves items using Get(), Load(), or a criteria query will also retrieve all the bids at
once. Retrieving unnecessary data imposes extra load on both the database server and
the application server and may also reduce the concurrency of the system, creating
too many unnecessary read locks at the database level.

 Hence we consider eager fetching at the level of the mapping file to be almost
always a bad approach. The outer-join attribute of collection mappings is arguably a
misfeature of NHibernate (fortunately, it’s disabled by default). Occasionally, it makes
sense to enable outer-join for a <many-to-one> or <one-to-one> association (the
default is auto; see section 4.4.6), but you’d never do this in the case of a collection.

 Our recommended solution for this problem is to take advantage of NHibernate’s
support for runtime (code-level) declarations of association fetching strategies. The
example can be implemented like this:

IList<Item> results = session.CreateCriteria(typeof(Item))
 .Add(Expression.Eq("item.Seller", user))
 .SetFetchMode("Bids", FetchMode.Eager)
 .List<Item>();
// Make results distinct
ISet<Item> distinctResults = new HashedSet<Item>(results);
IList maxAmounts = new ArrayList();
foreach (Item item in distinctResults) {
 double maxAmount = 0;
 foreach (Bid bid in item.Bids) {
 if(maxAmount < bid.Amount)
 maxAmount = bid.Amount;
 }
 maxAmounts.Add(new MaxAmount(item.Id, maxAmount));
}

252 CHAPTER 7 Retrieving objects efficiently
You disabled batch fetching and eager fetching at the mapping level; the collection is
lazy by default. Instead, you enable eager fetching for this query alone by calling Set-
FetchMode(). As discussed earlier in this chapter, this is equivalent to a fetch join in
the from clause of an HQL query.

 The previous code example has one extra complication: the result list returned by
the NHibernate criteria query isn’t guaranteed to be distinct. In the case of a query
that fetches a collection by outer join, it will contain duplicate items. It’s the applica-
tion’s responsibility to make the results distinct if that is required. You implement this
by adding the results to a HashedSet (from the library Iesi.Collections) and then
iterating the set.

 You’ve now established a general solution to the n+1 selects problem. Rather than
retrieving just the top-level objects in the initial query and then fetching needed asso-
ciations as the application navigates the object graph, you follow a two-step process:

1 Fetch all needed data in the initial query by specifying exactly which associa-
tions will be accessed in the following unit of work.

2 Navigate the object graph, which consists entirely of objects that have already
been fetched from the database.

This is the only true solution to the mismatch between the object-oriented world,
where data is accessed by navigation, and the relational world, where data is accessed
by joining.

 Another efficient solution, for deep graphs of objects, is to issue one query per
level and let NHibernate resolve the references between the objects. For example, you
can query categories, asking NHibernate to fetch their items. Then you can query
these items, asking NHibernate to fetch their bids.

 Finally, there is one further solution to the n+1 selects problem. For some classes
or collections with a sufficiently small number of instances, it’s possible to keep all
instances in the second-level cache, avoiding the need for database access. Obviously,
this solution is preferred where and when it’s possible (it isn’t possible in the case of
the Bids of an Item, because you wouldn’t enable caching for this kind of data).

 The n+1 selects problem may appear whenever you use the List() method of
IQuery to retrieve the result. As we mentioned earlier, this issue can be hidden in
more complex logic; we highly recommend the optimization strategies mentioned in
section 4.4.7 to find such scenarios. It’s also possible to generate too many selects by
using Find(), the shortcut for queries on the ISession API, or Load() and Get().

 Next, we examine a third query API method. It’s extremely important to under-
stand when it’s applicable, because it produces n+1 selects!

7.7.2 Using Enumerable() queries

The Enumerable() method of the ISession and IQuery interfaces behaves differently
than the Find() and List() methods. It’s provided specifically to let you take full
advantage of the second-level cache.

253Optimizing object retrieval
 Consider the following code:

IQuery categoryByName =
 session.CreateQuery("from Category c where c.Name like :name");
categoryByName.SetString("name", categoryNamePattern);
IList categories = categoryByName.List();

This query results in execution of a SQL select, with all columns of the CATEGORY
table included in the select clause:

select CATEGORY_ID, NAME, PARENT_ID from CATEGORY where NAME like ?

If you expect that categories are already cached in the session or second-level cache,
then you only need the identifier value (the key to the cache). This will reduce the
amount of data you have to fetch from the database. The following SQL would be
slightly more efficient:

select CATEGORY_ID from CATEGORY where NAME like ?
You can use the Enumerable() method:
IQuery categoryByName =
 session.CreateQuery("from Category c where c.Name like :name");
categoryByName.SetString("name", categoryNamePattern);
IEnumerable<Category> categories = categoryByName.Enumerable<Category>();

The initial query only retrieves the category primary key values. You then iterate
through the result, and NHibernate looks up each Category in the current session
and in the second-level cache. If a cache miss occurs, NHibernate executes an addi-
tional select, retrieving the category by its primary key from the database.

 In most cases, this is a minor optimization. It’s usually much more important to
minimize row reads than to minimize column reads. Still, if your object has large
string fields, this technique may be useful to minimize data packets on the network
and, therefore, latency.

 Let’s talk about another optimization, which also isn’t applicable in every case. So
far, we’ve only discussed caching the results of a lookup by identifier (including
implicit lookups, such as loading a lazy association) in chapter 5. It’s also possible to
cache the results of NHibernate queries.

7.7.3 Caching queries

For applications that perform many queries and few inserts, deletes, or updates, cach-
ing queries can have an impact on performance. But if the application performs many
writes, the query cache won’t be utilized efficiently. NHibernate expires a cached
query result set when there is any insert, update, or delete of any row of a table that
appears in the query.

 Just as not all classes or collections should be cached, not all queries should be
cached or will benefit from caching. For example, if a search screen has many differ-
ent search criteria, then it won’t happen often that the user chooses the same crite-
rion many times. In this case, the cached query results will be underused, and you’d
be better off not enabling caching for that query.

254 CHAPTER 7 Retrieving objects efficiently
 Note that the query cache doesn’t cache the entities returned in the query result set,
just the identifier values. But NHibernate does fully cache the value-typed data returned
by a projection query. For example, the projection query "select u, b.Created from
User u, Bid b where b.Bidder = u" results in caching of the identifiers of the users and
the date object when they made their bids. It’s the responsibility of the second-level
cache (in conjunction with the session cache) to cache the actual state of entities. If the
cached query you just saw is executed again, NHibernate will have the bid-creation dates
in the query cache but perform a lookup in the session and second-level cache (or even
execute SQL again) for each user in the result. This is similar to the lookup strategy of
Enumerable(), as explained in the previous section.

 The query cache must be enabled using, for example, the following:

<add key="hibernate.cache.use_query_cache" value="true" />

But this setting alone isn’t enough for NHibernate to cache query results. By default,
NHibernate queries always ignore the cache. To enable query caching for a particular
query (to allow its results to be added to the cache, and to allow it to draw its results
from the cache), you use the IQuery interface:

IQuery categoryByName =
 session.CreateQuery("from Category c where c.Name = :name");
categoryByName.SetString("name", categoryName);
categoryByName.SetCacheable(true);

But even this doesn’t give you sufficient granularity. Different queries may require dif-
ferent query-expiration policies. NHibernate allows you to specify a different named
cache region for each query:

IQuery userByName =
 session.CreateQuery("from User u where u.Username= :uname");
userByName.SetString("uname", username);
userByName.SetCacheable(true);
userByName.SetCacheRegion("UserQueries");

You can now configure the cache-expiration policies using the region name. When
query caching is enabled, the cache regions are as follows:

■ The default query cache region, null
■ Each named region
■ The timestamp cache, NHibernate.Cache.UpdateTimestampsCache, which is a

special region that holds timestamps of the most recent updates to each table

NHibernate uses the timestamp cache to decide whether a cached query result set is
stale. NHibernate looks in the timestamp cache for the timestamp of the most recent
insert, update, or delete made to the queried table. If it’s later than the timestamp of
the cached query results, then the cached results are discarded and a new query is
issued. For best results, you should configure the timestamp cache so that the update
timestamp for a table doesn’t expire from the cache while queries against the table are
still cached in one of the other regions. The easiest way is to turn off expiry for the
timestamp cache.

255Summary
 Some final words about performance optimization: remember that issues like the
n+1 selects problem can slow your application to unacceptable performance. Try to
avoid the problem by using the best fetching strategy. Verify that your object-retrieval
technique is the best for your use case before you look into caching anything.

 From our point of view, caching at the second level is an important feature, but it
isn’t the first option when optimizing performance. Errors in the design of queries or
an unnecessarily complex part of your object model can’t be improved with a “cache it
all” approach. If an application only performs at an acceptable level with a hot cache
(a full cache) after several hours or days of runtime, you should check it for serious
design mistakes, unperformant queries, and n+1 selects problems.

7.7.4 Using profilers and NHibernate Query Analyzer

In most cases, there are many ways to write a query; it may be hard to select the opti-
mal approach. Profiler tools can help you test the performance of these options; use
them as often as possible.

 When you’re working with HQL queries, you may wonder whether the generated
SQL is optimal. A tool called NHibernate Query Analyzer lets you dynamically write
and execute queries on your domain model. It displays the generated SQL query in
real time and displays the result of your query when you execute it. It’s also helpful
when you’re learning HQL. For more details, refer to the documentation at http://
www.ayende.com/projects/nhibernate-query-analyzer.aspx.

7.8 Summary
We don’t expect that you know everything about HQL and criteria after reading this
chapter once. But the chapter will be useful as a reference in your daily work with NHi-
bernate, and we encourage you to come back and reread sections whenever you need to.

 The code examples in this chapter show the three basic NHibernate query tech-
niques: HQL, Query by Criteria (including a Query by Example mechanism), and
direct execution of database-specific SQL queries.

 We consider HQL the most powerful method. HQL queries are easy to understand,
and they use persistent class and property names instead of table and column names.
HQL is polymorphic: you can retrieve all objects with a given interface by querying for
that interface. With HQL, you have the full power of arbitrary restrictions and projec-
tion of results, with logical operators and function calls just as in SQL, but always on
the object level using class and property names. You can use named parameters to
bind query arguments in a secure and type-safe way. Report-style queries are also sup-
ported, and this is an important area where other ORM solutions usually lack features.

 Most of this is also true for criteria-based queries; but instead of using a query string,
you use a typesafe API to construct the query. So-called example objects can be com-
bined with criteria—for example, to retrieve “all items that look like the given example.”

 The most important part of object retrieval is the efficient loading of associated
objects—that is, how you define the part of the object graph you’d like to load from
the database in one operation. NHibernate provides lazy-, eager-, and batch-fetching

http://www.ayende.com/projects/nhibernate-query-analyzer.aspx
http://www.ayende.com/projects/nhibernate-query-analyzer.aspx

256 CHAPTER 7 Retrieving objects efficiently
strategies, in mapping metadata and dynamically at runtime. You can use association
joins and result iteration to prevent common problems such as the n+1 selects prob-
lem. Your goal is to minimize database round trips with many small queries; but at the
same time, you try to minimize the amount of data loaded in one query.

 The best query and the ideal object-retrieval strategy depend on your use case, but
you should be well prepared with the examples in this chapter and NHibernate’s
excellent runtime fetching strategies.

Part 3

NHibernate in the real world

In real-world projects, you need patterns, tools, and processes that scale well
with the projects’ complexity. NHibernate’s power and flexibility allows it to be
adapted to almost any solution architecture. Because of this flexibility, it’s not
always obvious how to make the best use of NHibernate in your projects. In this
part of the book, we aim to remedy that, helping you make the best choices by
demonstrating many techniques, tips and best practices needed to design and
implement persistence layers with NHibernate in the real world.

Developing
 NHibernate applications
At this point, you may be thinking, “I know all about NHibernate features, but how
do I fit them together to build a full NHibernate application?” It’s time for us to
answer that question and to show you how to apply the knowledge you’ve gained to
implement applications as part of a real-world development process.

 We discussed the architecture of an NHibernate application in section 1.1.5.
This provided the bird’s-eye view, but you need to get from that point to working
with executable code.

This chapter covers
■ Implementing layered applications
■ Solving issues when setting up .NET

applications using NHibernate
■ Achieving design goals
■ Solving debugging and performance problems
■ Using integrating services like audit logging
259

260 CHAPTER 8 Developing NHibernate applications
 We discuss the development process layer by layer, showing the internals of each
layer and how each should handle its designated responsibilities. We also discuss how
layers should communicate with each other.

 Because this book focuses on NHibernate, the domain model and persistence layers
draw most of our attention. However, using NHibernate requires design decisions
throughout all the application layers, so we provide details where we feel they will help.

 The complexity of defining and building a layered application depends on the
complexity of the problem at hand. For instance, the “Hello World” application in
chapter 2 is trivial, but building an application as complex as the CaveatEmptor exam-
ple is more challenging. By following the advice given in this chapter, you should be
able to find your way through any difficult patches.

 This chapter begins by focusing on the implementation of an NHibernate applica-
tion. First, we rediscover the classic architecture of an NHibernate application. We talk
about its layers and their purposes and briefly about their implementations. After that,
we discuss some issues relating specifically to .NET applications, including web applica-
tions, security, and remoting. Finally, we explore approaches to troubleshooting and
bug-fixing in your NHibernate applications. This part also serves as a map for the next
two chapters; it will provide references to upcoming sections for more details.

 The last part of this chapter is about services: how to integrate loosely coupled
components with an NHibernate application. You’ll learn how to use the IIntercep-
tor interface to efficiently integrate services like audit logging. We also discuss some
other alternatives.

 Let’s start with the architecture of an NHibernate application and its implementation.

8.1 Inside the layers of an NHibernate application
Chapter 1 presented an overview of the layered architecture of an NHibernate applica-
tion. In this chapter, we look at the code that belongs in these layers.

 If you recall, disciplined layering is important because it helps you achieve separa-
tion of concerns, making code more readable and maintainable by grouping code
that does similar things. Layering also carries a price: each extra layer increases the
amount of code required to implement a piece of functionality—and more code
makes the functionality more difficult to change.

 We don’t try to form any conclusions about the correct number of layers to use (and
certainly not about what those layers should be) because the “best” design varies from
application to application and a complete discussion of application architecture is well
outside the scope of this book. We merely observe that, in our opinion, a layer should
exist only if it’s required, because it increases the complexity and costs of development.

 In this section, we go through the layers introduced in chapter 1, explaining their
roles and discussing their implementations. That way, you’ll progressively learn how to
develop an NHibernate application. These layers are as follow:

■ The business layer (with the domain model)
■ The persistence layer
■ The presentation layer

261Inside the layers of an NHibernate application
Only two of these layers matter to the end user: the business layer matters because it
embodies the problem the application is supposed to solve, and the presentation layer
matters because it lets the user issue commands to the application and see the results.

 The user doesn’t care about the persistence layer directly, but it’s obviously essen-
tial to most applications. It’s useful to remember that persistence is a service that the
application uses (like those presented in section 8.4), and is there to permit loading
and saving of an application’s data. Keeping this viewpoint in mind will help you
achieve a good separation of concerns.

 If you think carefully about the implementation of these layers, you’ll see that they
all exist to augment the domain model in some way. This is why we say that the devel-
opment process of an NHibernate application is domain-centric; this approach is called
domain-driven development (DDD). Because testing is part of the development process, we
also discuss testing these layers and see how you can apply test-driven development (TDD).

 Before we go any further, an introduction to patterns, DDD, and TDD is required.

8.1.1 Using patterns and methodologies

The breadth of this chapter requires us to mention many patterns and practices
related to software development. Explaining each in depth is beyond the scope of this
book, but we give a brief introduction to each pattern as we encounter it. If you’re in
unfamiliar territory, we encourage you to follow any references we give to get a deeper
understanding of the topic.

 If you haven’t studied patterns before, here’s the general idea. Many problems,
although different in their formulation, are solved in similar ways. Thus it’s possible to
formulate a general solution that applies to many similar problems. In software, many
professionals have documented the most useful patterns they’ve observed in the field,
allowing them to communicate and share their knowledge with others. Hundreds of
software-design patterns have been documented over the years, and throughout this
section we give references to books and articles we consider important.

 Let’s quickly look at one popular and famous pattern: the Singleton pattern. You
may have heard of it. The Singleton pattern ensures that a class has only one instance
in an application and provides a global point of access to that instance. If you don’t
want people creating more than one instance of your Shopping Basket class, you can
use the Singleton pattern to prevent them from doing so. This pattern was well docu-
mented in the book Design Patterns: Elements of Reusable Object-Oriented Software, pub-
lished more than 10 years ago [Gamma et al 1995]. Because the Singleton pattern has
proven so useful, it continues to be used daily in many open source and commercial
.NET projects, including the .NET framework itself.

 Learning patterns offers many benefits. They’re well tested, time-proven methods
that let you leverage the experience of other professionals. They give you a common
vocabulary for efficiently communicating aspects of your software with others. You can
learn more about patterns in the books Design Patterns and Patterns of Enterprise Applica-
tion Architecture [Fowler 2003] and Head First Design Patterns [Eric Freeman et al 2004].

262 CHAPTER 8 Developing NHibernate applications
In addition, you may want to look up the many books and papers related to the Pattern
Language of Programs (PLoP) conferences (http://hillside.net/plop/2008/).
DOMAIN-DRIVEN DEVELOPMENT

The practice of DDD is complementary to NHibernate development. DDD is an
increasingly popular approach to building software; the development process is heav-
ily focused on the domain model. Establishing a good domain model is a fine art, and
DDD asks that developers and business folk find common terminology to use in both
conversation and code. In a DDD solution, the domain model should fully express the
problem in terms that both developers and business people understand.

 NHibernate applications are well suited to this domain-model-centric approach.
We encourage you to learn more about DDD: see Domain-Driven Design [Evans 2004]
and Applying Domain-Driven Design and Patterns [Nilsson 2006].
TEST-DRIVEN DEVELOPMENT

TDD is another practice that has gained much popularity over the last decade. Often,
developers think that TDD must be about testing code that has already been written,
but that’s not entirely true. TDD is a practice that encourages developers to write tests
before—or at least at the same time as—they write their domain logic and other code.
This means thinking of a solution to a problem, writing the tests for this solution, and
then implementing the solution to make the tests pass. If you’ve not tried TDD before,
it may be hard for you to instantly understand the magic of this approach. We strongly
recommend that you try it; once you’re used to the process, the benefits become clear.

 Unit testing is a key part of TDD and is different from classic application testing.
Traditionally, testing involved having a test team exhaustively test applications by nav-
igating screens and prodding buttons. Unit testing is different because it’s repeatable
and automated, and it doesn’t involve user interaction. Thus unit testing can be
done frequently.

 When you use unit testing, you write tests to test a single unit of code at a time,
such as a class or function. Each test is usually small and only needs to interact with
the unit of code, rather than an entire application. This means you can run thousands
of tests by clicking the “run tests” button and sipping your coffee while the computer
does the hard work.

 The .NET framework has some popular testing libraries to support TDD and unit
testing. The most popular is NUnit (http://nunit.org/). Later in this chapter, we
briefly demonstrate how you can unit test a domain model and the business layer
using NUnit.

 Like DDD, TDD is an agile software development practice (http://en.wikipedia.
org/wiki/agile_software_development). For more details about NUnit and TDD, read
Test-Driven Development in Microsoft .NET [Newkirk et al 2004]. You can also look at tools
like ReSharper (http://www.jetbrains.com/resharper/) which is a Visual Studio plug-
in that can help greatly with both TDD and DDD.

 With all these methodologies and patterns in mind, let’s see how you can use them
to develop the layers of an application.

http://hillside.net/plop/2008/
http://nunit.org/
http://en.wikipedia.org/wiki/agile_software_development
http://en.wikipedia.org/wiki/agile_software_development
http://www.jetbrains.com/resharper/

263Inside the layers of an NHibernate application
8.1.2 Building and testing the layers

In the following sections we demonstrate how to combine these good practices to
build an NHibernate application. A clear separation of concerns allows you to develop
the layers of an application almost independently. Some practitioners like to start with
the GUI layer, others like to start with the domain model layer, and some developers
build all the layers simultaneously. For the purposes of simplicity, we start with the
domain model and work our way up to the presentation layer. For each layer, we look
at two activities: writing the core classes and writing the unit tests.

8.1.3 The domain model

The domain model is commonly considered part of the business layer. But we define a
slight separation: the domain model is the heart of the business. It indicates what the
business is doing (the domain) and represents the entities manipulated in the domain
by the business (the model).

 It’s conceptually independent of any other layer, even the business layer, because it
doesn’t use any class that isn’t itself part of the domain model. Without realizing it,
you’re familiar with the domain model because it primarily includes entities, which
you’ve been implementing since chapter 2!

 You can see a more complex example of a domain model in the CaveatEmptor appli-
cation illustrated in chapter 4, figure 4.2. Its implementation requires nine classes for
the entities and even more for the other components.
IMPLEMENTATION

In the context of enterprise application development, implementing a domain model
may not be as simple as it looks. This section enumerates the steps of this process
along with some of the problems you may encounter; we cover this topic more thor-
oughly in chapter 9.

 There are two ways to build your domain model entities. You can either write them
from scratch, or generate them from the mapping files, a database schema, or some
other intermediate format. Either way, building the entities is usually easy enough; it’s
a matter of creating a set of classes with appropriate constructors and properties.

 Implementing the entities’ behavior and rules (the business logic) can be less
straightforward. You must be careful when choosing how and where to implement
business rules to prevent things from getting too complicated.

 A domain model doesn’t exist in isolation, so the other layers may have an influ-
ence on how it is designed. For example, they may require the domain model to not
be completely persistence ignorant, or that entities expose properties to assist in GUI
data binding.

 Finally, you may have to communicate with other components/services/applica-
tions that aren’t able to manipulate your domain model directly. In .NET applications,
it’s common to have a specific format for sending information to and from other
applications. This might be XML, json, DataSets or even Data Transfer Objects
(DTOs). In all these cases, you must find a way of converting data between these for-
mats, which isn’t always easy.

264 CHAPTER 8 Developing NHibernate applications
 All these problems require consideration and experimentation. Chapter 9 pro-
vides a wide range of options to help you solve them.
TESTING

If your previous applications didn’t include tests for your domain model, you should
reconsider your position. Remember, your domain model is the heart of your software;
but unlike the presentation layer, a broken domain model may not be easily visible.

 Note that when you’re unit testing your domain model, the units are the entities.
 Globally, you can use two kinds of tests: data-integrity tests and logic tests. Let’s

take a simple example of each and see how you can use NUnit. To make it even more
fun, we apply TDD.

 Data-integrity tests are simple tests to make sure the entities’ content is valid
(according to the business logic) and remains valid, no matter what happens. For
example, suppose you have a User entity in your domain model, and its name is man-
datory; and because it’s stored in the database, this name must not exceed a certain
number of characters (let’s say 64).

 Listing 8.1 shows three tests to codify this specification.

using NUnit.Framework;
[TestFixture]
public class UserFixture {
 [Test]
 public void WorkingName() {
 string random = new Random().Next().ToString();
 User u = new User();
 u.Name = random;
 Assert.AreEqual(random, u.Name);
 }
 [Test, ExpectedException(typeof(BusinessException))]
 public void NotNullableName() {
 User u = new User();
 u.Name = null;
 }
 [Test, ExpectedException(typeof(BusinessException))]
 public void TooLongName() {
 User u = new User();
 u.Name = "".PadLeft(65, 'x');
 }
}

Tests are grouped in public classes called fixtures. NUnit uses attributes to identify
them; this is why this class is decorated with the attribute [TestFixture]. Tests are
methods marked using [Test]. Note that these methods must be public and must
take no parameters.

 The first test makes sure there is a property called Name in the class User and that it
keeps the value you assign to it. You use a random value to prove that the name is
stored correctly. The actual test is done using Assert.AreEqual(...); the Assert
class belongs to NUnit and provides a wide range of methods for testing.

Listing 8.1 Unit testing an entity

Name property
keeps its value

Name can’t
be null

Name must not
exceed 64 characters

265Inside the layers of an NHibernate application
 The two other tests use a different approach. They try to set invalid values to the
property Name and expect it to throw a BusinessException. If it doesn’t, the test fails.
As explained in section 9.4.2, you may allow invalid values and validate changed enti-
ties before saving them.

 Remember, it’s good practice to keep test fixture classes in a separate test library.
 Now, we can move on to the implementation of the part of the User class that

makes these three tests pass. First, you create the User class and its Name property;
then, you use a _name field to keep the value assigned to this property. At this point,
the first test passes.

 After that, you add a validation to make the two other tests pass. Here is the final
result:

public class User {
 private string _name;
 public string Name {
 get { return _name; }
 set {
 if(string.IsNullOrEmpty(value) || value.Length>64)
 throw new BusinessException("Invalid name");
 _name = value;
 }
 }
}

This code is easy to understand: in the setter of the Name property you throw en excep-
tion if the name that is about to be set is invalid (null, empty, or too long); you keep
this value in the _name field.

 The second kind of test for an entity is the logic test, which tests any behavior in
the entity. For example, when changing her password, the user must provide the old
password, and then enter the new password twice.

 Here are some tests for this method (they assume that a newly created user has a
blank password and that there is no encryption):

[Test]
public void WorkingPassword() {
 string random = new Random().Next().ToString();
 User u = new User();
 u.ChangePassword("", random, random);
 Assert.AreEqual(random, u.Password);
}
[Test, ExpectedException(typeof(BusinessException))]
public void BadOldPassword() {
 User u = new User();
 u.ChangePassword("?", "", "");
}
[Test, ExpectedException(typeof(BusinessException))]
public void DifferentNewPasswords() {
 User u = new User();
 u.ChangePassword("", "x", "y");
}

266 CHAPTER 8 Developing NHibernate applications
There is little to explain. The first test makes sure you can successfully change the
password, and the other two make sure you can’t change the password with an invalid
old password or a new password that’s different than the confirmation password.

 Here is an implementation of the ChangePassword() method that makes these
tests pass:

public void ChangePassword(string oldPwd, string newPwd,
 string confirmPwd) {
 if((_password != oldPwd) || (newPwd != confirmPwd))
 throw new BusinessException("...");
 _password = newPwd;
}

Note that you should probably separate the two validations to provide meaningful
messages in the thrown exception. And, in the real world, you should move these vali-
dations to the business layer, as you’ll do in the next section.

 Remember that a domain model can (and should) be efficiently tested. Its auton-
omy makes it easy not only to implement, but also to test.

 Let’s continue with the other classes that form the business aspect of the application.

8.1.4 The business layer

The business layer acts as a gateway that upper layers (such as the presentation layer)
must use to manipulate entities. It’s common to see .NET applications (mainly those
using DataSet) directly access the database. You already know that doing so is wrong,
and why (if you’ve forgotten, see section 1.2).

 The business layer plays several roles: It’s a layer on top of the persistence layer. It
performs high-level business logic (that can’t be performed by the entities them-
selves). It may also integrate services like security and audit logging.

 The controller (from the model-view-controller [MVC] pattern) can also be consid-
ered part of this layer. It pilots the flow of information between the end user (through
the view) and the model. But it’s a good practice to keep the controllers as a thin layer
on top of the core of the business layer.
IMPLEMENTATION

Depending on the coupling between the entities, you can write one business class to
manage each entity or one for many entities. You may also have business classes for
some use cases or scenarios.

 When you’re implementing CRUD-like operations, try not to mimic the persistence
layer. At this level, save and update aren’t business words; but it’s easy to find the right
words when you consider the problem from a business perspective. For example,
when you place a bid on an item, although you’re saving this bid in the database
(technically speaking), you shouldn’t call the method performing this operation
SaveBid(); in this case, PlaceBid() is more expressive. Obviously, PlaceBid() (in the
business layer) will send the bid for persistence using a method from the persistence
layer that can be called Save() (or MakePersistent() as explained in section 10.1).

267Inside the layers of an NHibernate application
 Let’s change the previous example to illustrate a piece of the business layer. What
if you want to allow administrators to change users’ passwords (without knowing their
current ones)?

 In this case, the class User can’t perform this logic because it doesn’t know which
user is currently logged in, unless you make this information available using, for
example, the Singleton pattern (but this may not be a good idea).

 Here is how you can implement the ChangePassword() method (this method
belongs to a class in the business layer):

public void ChangePassword(User u,
 string oldPwd, string newPwd, string confirmPwd) {
 if(u != null)
 throw new ArgumentNullException("u");
 if(LoggedUser == null)
 throw new BusinessException("Must be logged");
 if((! LoggedUser.IsAdministrator && u.Password != oldPwd)
 || (newPwd != confirmPwd))
 throw new BusinessException("...");
 u.Password = newPwd;
 UserPersister.Save(u); // Persistence layer
}

This method includes many validations, but note that you don’t validate the new pass-
word; this is up to the User.Password property. You can make the setter of this prop-
erty internal (provided the domain model and the business layer are in the same
library) to make sure the presentation layer can’t change the password directly.

 Note that instead of receiving an instance of the User class, this method can
receive the user’s identifier and load the user internally. One advantage is that the
business layer won’t have to check if the user instance has been modified. Another
advantage is that the presentation layer can more easily provide an identifier rather
than a complete instance. This is especially the case with ASP.NET applications, where
you’re more likely to have an identifier rather than the entire user instance. Note that
it’s considered less object-oriented to pass identifiers rather than instances, but this is
a worthwhile trade-off in some cases.

 Unless you’re writing a heavily customizable search engine UI, you should provide
methods for all the kinds of queries that the end user can run. Don’t let the presenta-
tion layer build arbitrary queries; letting it do so makes the presentation layer aware of
the persistence layer, which may become a security issue, and it also makes the applica-
tion less testable. If you have many queries to run, you might consider a more extensi-
ble approach that avoids having to create too many query methods.

 You may also include some code for audit logging to keep track of what happened
and who did it (invaluable when you’re debugging an application in production). But
in section 8.4, you’ll learn another way to deal with this kind of service.

 We discuss implementing the business logic in section 9.4. We can’t discuss the
general implementation because it depends heavily on the application. Just make sure
you cleanly separate the business logic from the other layers. You may, for example,

268 CHAPTER 8 Developing NHibernate applications
put the business classes in a Business namespace and the controllers in a Control-
lers namespace. We also can’t provide much detail about the implementation of con-
trollers, because they tend to be platform-dependent.
TESTING

As you may guess, testing the business layer is crucial. It’s similar to testing the domain
model. If you understand unit testing as illustrated in listing 8.1, you should be able to
easily test the previous method, ChangePassword().

 But because this layer uses the persistence layer, it may become troublesome. Some
complex business logic may require a specific persistence strategy. These borderline
scenarios require a compromise between the separation of concerns and the ease of
implementation and testing.

 Tests for the business layer should only be related to the business layer itself. We
look at testing the persistence layer in the next section to see what must not be tested
here—even tests for the domain model’s entities should be separated.

8.1.5 The persistence layer

The persistence layer provides CRUD methods for entities. Thanks to NHibernate, it
can be implemented as a service (that is, non-intrusively) for the domain model.

 But some libraries merge the persistence layer into the domain model. We gener-
ally see that as a bad practice, but the reason behind this design choice is simplicity:
when you’re writing a new application that isn’t complex (in terms of layer coupling
and integration issues), having a persistence-ignorant domain model isn’t necessarily
a requirement.

 Regardless, we recommend that you build the persistence layer separately and that
you hide it behind the business layer. But we agree that it depends on your program-
ming style.
IMPLEMENTATION

The general practice, when implementing the persistence layer, is to write one persis-
tence class per entity, commonly called EntityNameDAO. (DAO stands for Data Access
Object.) It’s a well-known pattern to implement persistence layers. In the previous
code snippet, UserPersister can be called UserDAO.

 Persistence classes have methods for simple CRUD operations and can let the busi-
ness layer execute custom queries. We explain this approach in section 10.1.2.

 The presentation layer (and other upper layers) shouldn’t be able to access this
persistence layer unless the application is simple, in which case the business layer isn’t
required (but beware of simple applications evolving and becoming complex). If this
layer is in the same library as the business layer, its classes can be made internal. Oth-
erwise, avoid adding a reference in the presentation library to the persistence library.

 Also note that the persistence sits between the business layer and the database, so
the layer should hide any database semantics. This leads to a more maintainable busi-
ness layer that isn’t concerned with low-level database and persistence issues.

269Inside the layers of an NHibernate application
TESTING

As with the domain model, you can test the persistence layer two ways. You can test the
correctness of the mapping between the domain model and the database, and you can
also test the persistence logic.

 Testing the mapping means making sure the NHibernate mapping is correctly writ-
ten and those entities are correctly loaded and saved. It involves saving an entity with
random content, loading it, and making sure the content hasn’t changed.

 When you test the persistence logic, the logic is represented by any code customiz-
ing the way NHibernate works, such as the queries (the where clause, the ordering,
and so on). The idea is to make sure you get the data as intended.

 But you should avoid testing NHibernate itself. There are specific NHibernate tests
for that. Let’s take this test as an example:

session1.Save(entity);
Assert.IsNotNull(session2.Get<Entity>(id));

This test is useless because if Save() succeeds, then the entity was saved. You’ll have a
hard time if you don’t trust NHibernate and all the libraries to do their jobs. On the other
hand, you can make sure the proper lazy-loading and cascading options are enabled.

 Notice that you use two different sessions (session1 and session2) in this exam-
ple because session1.Get<Entity>(id) doesn’t hit the database; it uses its (first-
level) cache instead. If creating two sessions in a test is too costly for you, you can
either use session1.Clear() or provide your own database connection by calling
sessionFactory.OpenSession(yourDbConnection). For more details about the
caches, see section 6.3.

 Persistence tests are slower than other tests because of the cost of using a database.
You can speed them up using in-memory-capable RDBMSs like SQLite. It’s also possi-
ble to mock the database; but the tests may become less meaningful. (Mocking is a
technique that lets you fake a component in order to avoid its dependencies. For
details, see http://en.wikipedia.org/wiki/Mock_object.)

 Because the persistence layer is hidden behind the business layer, you can test it
through the business layer. Although doing so clutters the business layer tests with
unrelated tests, it may be acceptable for simple cases.

8.1.6 The presentation layer

The presentation layer is basically the user interface. In ASP.NET it’s made up of the
ASPX, ASCX, and various code-behind files. It serves as a bridge between the end user
and the business layer. Its primary function is to format and display information (the
entities); it also receives commands and information from the user to send them to
the business layer (or the Controller).
IMPLEMENTATION

Implementing the presentation layer is largely outside the scope of this book, but
using NHibernate may have some effect on it. Section 8.2 discusses deployment issues
of .NET applications that use NHibernate.

http://en.wikipedia.org/wiki/Mock_object

270 CHAPTER 8 Developing NHibernate applications
 From the domain model point of view, the biggest issue is displaying and retrieving
entities. .NET provides some powerful data-binding mechanisms that may be hard to
leverage with a domain model. In section 9.5, we show you many alternatives to data-
bind entities.

 To see a typical command-handling method, let’s implement a method that can be
called when the user clicks the button to change a password:

private void btnChangePassword_Click(object sender, EventArgs e) {
 try {
 Business.ChangePassword(editedUser,
 editOldPwd.Text, editNewPwd.Text, editConfirmPwd.Text);
 MessageBox.Show("Success!");
 // Or go to the success page
 }
 catch(Exception ex) {
 MessageBox.Show("Failed: " + ex.Message);
 // Or go to the failed page
 }
}

This method sends the information to the business layer and then displays a message.
The method plays the role of the Controller; strictly speaking, it should call the Con-
troller, which will then do exactly what is in this method. This is an example of a situa-
tion where the code-behind is used to implement the Controller logic; the Controller
isn’t part of the business layer but is merged in the presentation layer.

 We use the generic name Business for the business class because its name can vary
widely depending on the way you organize your business layer.

 Note that you should always output errors to a log file. Doing so may save you a lot
of work when you’re trying to figure out what happened in an application in production.
TESTING

The presentation layer is the most difficult to test automatically, because it’s inherently
visual. The most common way to test it is to run the application and see if it works.

 On the other hand, if you write your application as we’ve described in this chapter,
the persistence layer should consist of the design code (HTML for web applications)
and a thin code-behind for formatting and data binding. This code can be easily
tested visually: it isn’t complex, and it’s harder to break.

 A number of techniques and libraries are available to test the presentation layer, but
we don’t cover them here. For more information, start by reading http://en.wikipedia.
org/wiki/List_of_GUI_testing_tools.

 When you’re implementing these layers, you may encounter issues when you try to
make your NHibernate application work with some .NET features. Let’s see how you
can solve them.

8.2 Solving issues related to .NET features
Applications using NHibernate tend to use some .NET features that can be trouble-
some because of constraints in the way they work or because of security restrictions. In

http://en.wikipedia.org/wiki/List_of_GUI_testing_tools
http://en.wikipedia.org/wiki/List_of_GUI_testing_tools

271Solving issues related to .NET features
this section, we talk about two specific features: working in a web environment and
using .NET remoting.

8.2.1 Working with web applications

Web applications are much more restricted than Windows applications. They have a
specific structure, and they must follow many rules. This section aims to give you
guidelines for how to develop an application with a web interface.
QUICK START

You shouldn’t have major issues starting an application using web pages as the presen-
tation layer. To achieve a good separation of concerns, the other layers must not be in
the web application or web site; practically speaking, the code-behind of the pages
and App_Code section must contain only the presentation layer logic (formatting, dis-
playing, retrieving information, and calling the other layers). The other layers can
reside in one or more separate libraries. This is also true for Windows Forms applica-
tions, where GUI code is separated from other business and persistence code.

 You may encounter two common issues when implementing the presentation layer
of an NHibernate application: data-binding the entities (and their collections) and
managing the session to efficiently persist these entities. We discuss data binding in
section 9.5 and session management in chapter 10.
CODE ACCESS SECURITY

The .NET framework has a powerful security policy. It allows, for example, web admin-
istrators to limit the permissions given to assemblies based on their provenance. This
is required because web applications are generally accessible by a lot of uncontrollable
persons; hence they must be carefully configured to avoid security issues.

 Web servers are often configured for medium trust. For this reason, if you intend
to deploy your application in a public hosting service, you may have some issues get-
ting it to work. The medium-trust policy enforces some restrictions that affect NHiber-
nate applications: you can’t use reflection to access private members of a class, and
you can’t use proxies because they can’t be generated due to tightened security.

 You must map your database to public fields/properties, you must turn off lazy
loading by setting Lazy=false in the mapping of each class, and you must turn off the
reflection optimizer. Read sections 3.4.3 and 3.4.4 for more details.

 If your NHibernate configuration properties are in Web.config, you must add an
extra attribute to the section declaration:

<section name="nhibernate" type="..." requirePermission="false" />

Setting the requirePermission attribute to false lets NHibernate read this section
when loading the configuration.

8.2.2 .NET remoting

Many NHibernate applications use .NET remoting to make the business (or persis-
tence) layer accessible across a network. This is mainly the case for Windows applica-
tions. In this scenario, most layers can be executed on the client’s computer—except

272 CHAPTER 8 Developing NHibernate applications
the persistence layer, which is executed on the server. That way, database access can be
restricted so that only the server knows how to access the database; the client commu-
nicates with the server using, for example, a layer of marshal-by-reference objects.

 The domain model must be serializable. Because NHibernate proxies aren’t serial-
izable, you must also return entities with fully initialized associations. In some edge
cases, you may consider using Data Transfer Objects (DTOs). For more details, see sec-
tion 10.3.1.

 Once the application is finished, you may ask yourself whether you achieved your
initial goals. And now, the maintenance starts (fixing bugs, improving performance,
and so on). Let’s see how we can help you with these boring and stressful tasks.

8.3 Achieving goals and solving problems
Now that we’ve looked at the development process of an NHibernate application, let’s
take a step back and think again about the design of this application. Even with a
good implementation and set of tests, a poorly designed application would be useless.
This is why you should have some design goals and ways to measure how much
they’re achieved.

 A good understanding of the development process is required to fully take advan-
tage of this section. But don’t make the mistake of delaying this task when developing
an application. You should realize that the costs to change the design of an applica-
tion increase rapidly as the application is implemented. And in the middle of develop-
ment, don’t hesitate to take a break and look back at your initial goals and how far you
are from them.

 Assessing an application’s status isn’t always easy. Developers can also have a hard
time understanding what is wrong with their application. Having some problem-
solving skills is definitively a plus when you’re dealing with complex frameworks
like NHibernate.

 Finally, remember that a single tool can’t do every job. NHibernate is a good frame-
work to solve the ORM mismatch; but it’s also complex. We advise you to carefully test
NHibernate and your competence before you begin to use it in a mission-critical envi-
ronment. And learn to choose wisely: use NHibernate when it’s the best option, and
fall back to other alternatives for other situations.

 By the end of this section, you’ll have a better understanding of how to deal with
these tasks. Let’s start with the first one in the development process: achieving your
design goals.

8.3.1 Design goals applied to an NHibernate application

An NHibernate application is a .NET application using NHibernate. But because of the
central role played by NHibernate, you must take into consideration some implica-
tions when you’re designing an NHibernate application.

 The MSDN defines six design goals: availability, reliability, manageability, securabil-
ity, performance, and scalability. We look at each of them with NHibernate in mind.

273Achieving goals and solving problems
AVAILABILITY AND RELIABILITY

Availability and reliability relate to an application’s ability to be present and ready for
use. Basically, you should aim to make your application bug-free.

 NHibernate has an impact on the way your application is tested. Because it isn’t
intrusive, the business logic in your domain model and business layer can be fully
tested outside NHibernate’s scope. Note that you must still test the way you use NHi-
bernate; see the section on performance and scalability.

 Extensive testing is the first recommendation to achieve the goal of availability and
reliability. You should test the internals of your application and its interactions with
the outside world. If your application interacts with external services, verify that a fail-
ure in one of these services won’t cause your application to crash.

 Finally, if your application provides services to external systems, verify that they
can’t crash your application by sending invalid information or using your services in a
specific way. The end user can be considered part of these external systems. The most
common technique is to carefully validate all inputs you receive from these systems.
MANAGEABILITY AND SECURABILITY

Manageability and securability describe the application’s ability to be administered
and to protect its resources and its users. The purpose of manageability is to ease the
(re)configuration and the maintenance of the application.

 NHibernate encourages the separation of concerns in your application (layered
architecture), which increases its manageability. NHibernate is also configurable using
XML files, thus allowing production-time changes.

 Security wasn’t a major concern a few years ago, but it’s gaining considerably
more attention as systems become more open to the outside world. You should keep
your connection string in a safe place (not plain text and not in an assembly); for
example, you can keep it encrypted in Web.config. Our general advice is that you
implement your application with security in mind and encourage the use of minimal
privileges by default.
PERFORMANCE AND SCALABILITY

Performance is the measure of an application’s operation under load. Developers tend
to consider this goal the most important. It’s also the most misunderstood (for exam-
ple, it’s commonly confused with scalability).

 NHibernate is a layer on top of ADO.NET; do some tests to make sure your applica-
tion performs well, identify bottlenecks, and make sure NHibernate is efficiently used
(lazy/eager fetching, caching, and so on). As a last resort, NHibernate lets you fall back
to classic ADO.NET (the underlying connection is accessible through the ISession.
Connection property); we aren’t against stored procedures for batch processing. Note
that NHibernate 1.2.0 is faster than hand-coded data access for classic operations on
SQL Server because it uses an unexposed batching feature of the .NET framework.

 The next section gives you some tips that can help improve your application’s
performance. We think performance should be considered throughout a project,
rather than leaving it until the end. Of course, we don’t recommend you spend time

274 CHAPTER 8 Developing NHibernate applications
prematurely optimizing your systems, but it always helps to at least have an under-
standing of the performance implications of the code you’re writing.

 Scalability refers to an application’s ability to match increasing demand with a pro-
portional increase in resources and cost. You can use many techniques to achieve this
goal, including asynchronous programming (wrapping expensive calls using asyn-
chronous delegates). You should also use the ADO.NET connection pool (and maybe
increase its size); in this case, avoid using a connection string per user.

 Another best practice is to open an NHibernate session as late as possible and to
close it as soon as possible. You may also consider using a distributed cache (see sec-
tion 6.3).
FINAL NOTE

You may certainly aim at fulfilling all these design goals; but a design choice that has a
positive effect on one goal may at the same time have a negative effect on another.

 Remember that it’s important to have strict rules to make sure these goals are kept
in mind throughout the development process. It’s also important to balance the
amount of effort you put into optimization with the outcome of the work.

 Don’t work on a feature more than it’s worth, and don’t optimize blindly—that is,
without any way to know whether the optimization is needed and to measure the
improvement that results from it.

8.3.2 Identifying and solving problems

Nothing is more frustrating than getting an error and not understanding where it
comes from. But a strict debugging process helps easily fix most errors. Errors in .NET
applications are generally thrown exceptions.

 Users may also complain when they’re using a bug-free application, because the
application is too slow. This problem can be frustrating for users, and you can be cer-
tain they’ll pester you about it.
BUG-SOLVING PROCESS

Before you think about fixing a bug, make sure you have an infrastructure to catch
and log it and that the user receives a useful message. This is important in a produc-
tion environment.

 The first step to fix a bug revealed through an exception is to read the content of
this exception—not only the message, but also the stack trace, inner exceptions, and
so on (everything returned by exception.ToString()).

 Then try to understand the meaning of this exception (refer to the documenta-
tion), and begin investigating its origin. A good technique at this stage is to isolate the
problem until its origin and solution become obvious. Practically speaking, this means
removing processes until you locate the culprit. If you have a hard time understanding
an NHibernate exception, appendix B tells where you can ask for help.

 Once you’ve fully identified the problem, TDD recommends that you write tests
that reproduce this problem; these tests will help prevent the problem from coming
back unnoticed later. You should also take some time to think about the design of
your application, to see if the problem is the symptom of a bigger issue.

275Achieving goals and solving problems
 Finally, you can fix the bug, making the tests you wrote pass.
IMPROVING PERFORMANCE

Suppose you’ve received a performance complaint. Here are some common mistakes
you may have made and tips to help dramatically improve your application’s perfor-
mance (and make your users happier).

 To begin with, you should consider writing performance tests at an early stage,
rather than waiting for a user to tell you that your application is too slow. And don’t
forget to optimize your database (adding the correct indexes, and so on).

 Sometimes, developers new to NHibernate create the session factory more often
than is required. Remember, creating the session factory is an expensive process, and
for most applications, it needs to be done only once: at application startup. Try to give
your session factory a lifespan equal to that of your application (by keeping it in a
static variable, for example).

 Another common mistake, related to the fact that NHibernate makes it so easy to load
entities, is to load more information than you need (without knowing it). For example,
associations and collections are fully initialized when lazy loading isn’t enabled. Even
when you’re loading a single entity, you may end up fetching an entire object graph. Our
general advice is to always enable lazy loading and to write your queries carefully.

 A related issue arises when you enable lazy loading: the n+1 select problem. For
details, read section 8.6.1. You can spot this issue early by measuring the number of
queries executed per page; you can easily achieve that by writing a tool to watch logs
from NHibernate.SQL at the DEBUG level. If this level is higher than a certain limit, you
have a problem to solve; do it immediately, before you forget what is going on in this
page. You can also measure other performance-killer operations (like the number of
remote calls per page) and global performance information (such as the time it takes
to process each page).

 You should also try to load the information you need using the minimum number
of queries (but avoid expensive queries like those involving Cartesian products). Note
that it’s generally more important to minimize the number of entities loaded (row
count) than the number of fields loaded for each entity (column count). Chapter 8
describes many features that can help you write optimized queries.

 Now, let’s talk about a less-well-known issue, related to the way NHibernate works.
When you load entities, the NHibernate session keeps a number of pieces of information
about them (for transparent persistence, dirty checking, and so on). During commit-
ting/flushing, the session uses this information to perform the required operations.

 In one specific situation, this process can be a performance bottleneck: when you
load a lot of entities but update only few of them, this process is slower than it should
be. The session checks all the entities to find those that must be updated. You should
avoid this waste by evicting unchanged entities or using another session to save
changed entities.

 As a last resort, consider using the second-level cache (and the query cache) to hit
the database less often and reuse previous results. See section 6.3 for more details
about the pros and cons of this feature.

276 CHAPTER 8 Developing NHibernate applications
THROWING EXCEPTIONS

It’s common in other environments (like C++) to write code like this:

if(something goes wrong) return -1;

But .NET guidelines recommend using exceptions. They’re much more powerful and
harder to miss. It’s important to understand this concept because NHibernate relies
on exceptions to provide error reports, and your application should do the same.
Although you should already be familiar with this concept, we briefly review it and
explain how to handle NHibernate exceptions.

 Your first step should be to create your own exceptions to provide better informa-
tion (and thus make you able to better handle them). Use .NET built-in exceptions
only when they’re meaningful (for example, ArgumentNullException when reporting
a null argument).

 This book uses BusinessException when a business rule is broken. You can add
more specific exceptions if you need to.

 Another good practice is to not let exceptions from external libraries reach the
presentation layer (or any facade like WebService) untouched. You should wrap them
in your own exceptions.

 Here is an example showing the implementation of a simple Save() method in a
class of the persistence layer (this class can be called UserDAO):

public void Save(User user) {
 try {
 session.SaveOrUpdate(user);
 }
 catch(HibernateException ex) {
 log.Error("Error while saving a user.", ex);
 throw new PersistenceException("Error while saving a user.", ex);
 }
}

HibernateException is the (base) exception thrown by NHibernate. Obviously, the
upper layer must close the session if an exception is thrown. Note that you can move
this exception handling to the business layer (to provide a business-friendly message
to the user).

 If you come across a performance problem when using NHibernate, and you find
it difficult to solve, step back and ask yourself whether NHibernate was the right tool
for the process.

8.3.3 Use the right tool for the right job

As we explained in chapter 1, ORM and NHibernate are powerful tools. But we take
great care not to make NHibernate appear to be a silver bullet. It isn’t a solution that
will make all your database problems go away magically.

 Writing database applications is one of the more challenging tasks in software
development. NHibernate’s job is to reduce the amount of code you have to write for
the most common 90 percent of use cases (common CRUD and reporting).

277Integrating services: the case of audit logging
 The next 5 percent of use cases are more difficult; queries become complex, trans-
action semantics are unclear at first, and performance bottlenecks are hidden. You
can solve these problems with NHibernate elegantly and keep your application porta-
ble, but you’ll also need some experience to get it right.

 NHibernate’s learning curve is high at first. In our experience, a developer needs
at least two to four weeks to learn the basics. Don’t jump on NHibernate one week
before your project deadline—it won’t save you. Be prepared to invest more time than
you would need for another web application framework or simple utility.

 Finally, use SQL and ADO.NET for the 5 percent of use cases you can’t implement
with NHibernate, such as mass data manipulation or complex reporting queries with
vendor-specific SQL functions. Many tasks aren’t inherently object-oriented. Forcing
ORM can easily cripple the performance of your application.

 Once again: Use the right tool for the right job.
 There are other places where you must carefully think about the right approach.

For example, you can add services using many techniques, each of which has pros and
cons. Let’s study the case of audit logging.

8.4 Integrating services: the case of audit logging
So far, we’ve talked about the development of an NHibernate application without tak-
ing into account many aspects and features that may be hard to plug into a layered
architecture. In this section, we talk about the integration of these services.

 In the context of this book, a service is a clearly separated subsystem (set of classes)
that is integrated into the main application to add functionality. Note that talking
about independent services (for example, using COM) is largely out of the scope of
this book.

 The most common services are audit logging and security. It’s also common to have
business components implemented as services. For example, in a messaging platform,
a service may analyze messages to detect misbehaving users or filter strong language.

 We call them services because they should be loosely coupled with the business logic
(although it isn’t that important for simple applications). An important property of
services is that, due to their loose coupling, they can evolve and be configured inde-
pendently; it’s also easy to disable them without significantly affecting the main appli-
cation. This is why they’re often part of the nonfunctional requirements.

 Audit logging is the process of recording changes made to data (occurring events,
in general). An audit log is a database table that contains information about changes
made to other data—specifically, about the event that results in the change. For exam-
ple, you may record information about creation and update events for auction Items.
The information that’s recorded usually includes the user, the date and time of the
event, what type of event occurred, and the item that was changed.

 NHibernate has special facilities for implementing audit logs (and other similar
aspects that require a persistence event mechanism). In this section, we use the
IInterceptor interface to implement audit logging. But first, we briefly discuss the

278 CHAPTER 8 Developing NHibernate applications
hard way (doing it manually), so you can grasp the problem’s level of difficulty. Then
we show you how IInterceptor makes it much easier.

8.4.1 Doing it the hard way

The hard way (the manual way) requires continuous effort through the development
process. In the case of audit logging, it means calling the audit logging service each
time it’s needed.

NOTE Can’t I use database triggers?—Audit logs are often handled using database
triggers, and we think this is an excellent approach. But it’s sometimes
better for the application to take responsibility, especially if complex pro-
cessing is used or if portability between different databases is required.

Practically speaking, you can have an implementation similar to the following:

public void Save(User user) {
 try {
 session.SaveOrUpdate(user);
 AuditLog.LogEvent(LogType.Update, user);
 }
 catch { ... }
}

The call to the method LogEvent() of the class AuditLog generates and saves a log
about this change. LogType is an enumeration; it’s better than using a string. Note
that you may use the Observer pattern to remove the dependency on this service; see
section 9.3.2 for details about this pattern.

 The main advantage of this approach is that a better message can be generated for
each operation, because you know exactly what you’re doing each time you call this
service. The disadvantages are that this approach is verbose (it clutters the code) and,
more important, can be forgotten or bypassed. This is unacceptable when you’re
building a trustworthy audit logging service.

 This approach may work much better for other services; so don’t discard it completely.

8.4.2 Doing it the NHibernate way

Let’s see how NHibernate allows you to automate audit logging. The advantages of this
approach are the disadvantages of the hard way, and vice versa.

 You need to perform several steps to implement this approach:

1 Mark the persistent classes for which you want to enable logging.
2 Define the information that should be logged: user, date, time, type of modifi-

cation, and so on.
3 Tie it all together with an NHibernate IInterceptor that automatically creates

the audit trail for you.

CREATING THE MARKER ATTRIBUTE

You first create a marker attribute, AuditableAttribute. You use this attribute to
mark all persistent classes that should be automatically audited:

279Integrating services: the case of audit logging
[AttributeUsage(AttributeTargets.Class, AllowMultiple=false)]
[Serializable]
public class AuditableAttribute : Attribute {
}

This attribute can be applied once on classes; you can add properties to customize the
logging per class (for example, using a localized name instead of the class name).
Enabling audit logging for a particular persistent class is now trivial; you add it to the
class declaration. Here’s an example, for Item:

[Auditable]
public class Item {
 //...
}

Note that using an attribute implies relying on entity.ToString() to obtain logging
details. The audit-logging service has no other means to extract them, unless you use a
big switch statement to cast the object (which is feasible if this service is aware of the
domain model).

 Instead of an attribute, you can create an IAuditable interface. That way, the enti-
ties can actively participate to the logging process. You can also do both and choose
the best one for each entity.
CREATING AND MAPPING THE LOG RECORD

Now you create a new persistent class, AuditLogRecord. This class represents the
information you want to log in the audit database table:

public class AuditLogRecord {
 public long Id;
 public string Message;
 public long EntityId;
 public Type EntityType;
 public long UserId;
 public DateTime Created;
 internal AuditLogRecord() {}
 public AuditLogRecord(string message,
 long entityId,
 Type entityType,
 long userId) {
 this.Message = message;
 this.EntityId = entityId;
 this.EntityType = entityType;
 this.UserId = userId;
 this.Created = DateTime.Now;
 }
}

You shouldn’t consider this class part of your domain model. Hence you don’t need to
be as cautious about exposing public fields. The AuditLogRecord is part of your persis-
tence layer and possibly shares the same assembly with other persistence-related
classes, such as your custom mapping types.

 Next, you map this class to the AUDIT_LOG database table:

280 CHAPTER 8 Developing NHibernate applications
<hibernate-mapping default-access="field">
<class name="NHibernate.Auction.Persistence.Audit.AuditLogRecord,
 NHibernate.Auction.Persistence"
 table="AUDIT_LOG"
 mutable="false">
 <id name="Id" column="AUDIT_LOG_ID">
 <generator class="native"/>
 </id>
 <property name="Message" column="MESSAGE"/>
 <property name="EntityId" column="ENTITY_ID"/>
 <property name="EntityType" column="ENTITY_CLASS"/>
 <property name="UserId" column="USER_ID"/>
 <property name="Created" column="CREATED"/>
</class>
</hibernate-mapping>

You mark the class mutable="false" because AuditLogRecords are immutable. NHi-
bernate will no longer update the record, even if you try to.

 The audit-logging concern is somewhat orthogonal to the business logic that
causes the log-able event. It’s possible to mix logic for audit logging with the business
logic; but in many applications it’s preferable for audit logging to be handled in a cen-
tral piece of code, transparently to the business logic. You wouldn’t manually create a
new AuditLogRecord and save it whenever an Item was modified.

 NHibernate offers an extension point so you can plug in an audit-log routine or
any similar event listener. This extension is known as an NHibernate IInterceptor.
WRITING AN IINTERCEPTOR

You’d prefer that a LogEvent() method be called automatically when you call Save().
The best way to do this with NHibernate is to implement the IInterceptor interface,
as shown in listing 8.2.

public class AuditLogInterceptor : NHibernate.Cfg.EmptyInterceptor {
 private ISession session;
 private long userId;
 private ISet inserts = new HashedSet();
 private ISet updates = new HashedSet();
 public ISession Session {
 get { return this.session; }
 set { this.session = value; }
 }
 public long UserId {
 get { return this.userId; }
 set { this.userId = value; }
 }
 public virtual bool OnSave(object entity,
 object id,
 object[] state,
 string[] propertyNames,
 IType[] types) {
 if (entity.GetType().GetCustomAttributes(

Listing 8.2 IInterceptor implementation for audit logging

Collections to keep new
and modified entities

Opened session
must be provided

Required for
AuditLogRecord

Collects new
entities

281Integrating services: the case of audit logging
 typeof(AuditableAttribute), false).Length > 0)
 inserts.Add(entity);
 return base.OnSave(entity, id, state, propertyNames, types);
 }
 public virtual bool OnFlushDirty(object entity,
 object id,
 object[] currentState,
 object[] previousState,
 string[] propertyNames,
 IType[] types) {
 if (entity.GetType().GetCustomAttributes(
 typeof(AuditableAttribute), false).Length > 0)
 updates.Add(entity);
 return base.OnFlushDirty(entity, id,
 currentState, previousState, propertyNames, types);
 }
 public virtual void PostFlush(System.Collections.ICollection c) {
 try {
 foreach(object entity in inserts) {
 AuditLog.LogEvent(LogType.Create,
 entity,
 userId,
 session.Connection);
 }
 foreach(object entity in updates) {
 AuditLog.LogEvent(LogType.Update,
 entity,
 userId,
 session.Connection);
 }
 } catch (HibernateException ex) {
 throw new CallbackException(ex);
 } finally {
 inserts.Clear();
 updates.Clear();
 }
 }
}

Instead of directly implementing the IInterceptor interface, you inherit from
EmptyInterceptor, which allows you to ignore the methods of this interface that you
don’t need.

 This particular interceptor has two interesting aspects. First, the session and user-
Id are fields this interceptor needs to do its work, so a client using this interceptor must
set both properties when enabling the interceptor. The other interesting aspect is the
audit-log routine in OnSave() and OnFlushDirty(), where you add new and updated
entities to collections. The OnSave() interceptor method is called whenever NHiber-
nate saves an entity; the OnFlushDirty() method is called whenever NHibernate
detects a dirty object. The audit logging is done in the PostFlush() method, which
NHibernate calls after executing the synchronization SQL.

 Note that entity.GetType().GetCustomAttributes() performs badly (compared
to using IAuditable), but you can optimize this code by caching all the decorated types.

Collects
modified
entities

Log process

282 CHAPTER 8 Developing NHibernate applications
 You use the static call AuditLog.LogEvent() (a class and method we discuss next)
to log the event. Note that you can’t log events in OnSave(), because the identifier
value of a new entity may not be known at this point. NHibernate is guaranteed to
have set all entity identifiers after flushing, so PostFlush() is a good place to perform
audit logging.

 Also note how you use the session: you pass the ADO.NET connection of a given
session to the static call to AuditLog.LogEvent(). There is a good reason for doing
this, as we discuss in more detail. Let’s first tie it all together and see how you enable
the new interceptor.
ENABLING THE INTERCEPTOR

You need to assign the IInterceptor to an NHibernate ISession when you first open
the session:

AuditLogInterceptor interceptor = new AuditLogInterceptor();
using(ISession session =
 sessionFactory.OpenSession(interceptor)) {
 interceptor.Session = session;
 interceptor.UserId = currentUser.Id;
 using(session.BeginTransaction()) {
 session.Save(newItem); // Triggers OnSave() of the interceptor
 session.Transaction.Commit(); // Triggers PostFlush()
 }
}

You should move the session opening to a helper method to avoid doing this work
each time.

 Let’s get back to that interesting session-handling code inside the interceptor and
find out why you pass the Connection of the current ISession to AuditLog.
LogEvent().
USING A TEMPORARY SESSION

It should be clear why you require an ISession instance inside the AuditLogInter-
ceptor. The interceptor has to create and persist AuditLogRecord objects, so a first
attempt for the OnSave() method can have been the following routine:

if (entity.GetType().GetCustomAttributes(
 typeof(AuditableAttribute), false).Length > 0) {
 try {
 object entityId = session.GetIdentifier(entity);
 AuditLogRecord logRecord = new AuditLogRecord(...);
 // ... set the log information
 session.Save(logRecord);
 } catch (HibernateException ex) {
 throw new CallbackException(ex);
 }
}

You use session.GetIdentifier(entity) to easily get the identifier. This implemen-
tation seems straightforward: create a new AuditLogRecord instance and save it, using
the current session. But it doesn’t work.

283Integrating services: the case of audit logging
 It’s illegal to invoke the original NHibernate ISession from an IInterceptor call-
back. The session is in a fragile state during interceptor calls. A nice trick that avoids
this issue is to open a new ISession for the sole purpose of saving a single Audit-
LogRecord object. To keep this as fast as possible, you reuse the ADO.NET connection
from the original ISession. This temporary session handling is encapsulated in the
AuditLog helper class, as shown in listing 8.3.

public class AuditLog {
 public static void LogEvent(
 LogType logType,
 object entity,
 long userId,
 IDbConnection connection) {
 using(ISession tempSession = sessionFactory.OpenSession(connection)) {
 AuditLogRecord record =
 new AuditLogRecord(logType.ToString(),
 tempSession.GetIdentifier(entity),
 entity.GetType(),
 userId);
 tempSession.Save(record);
 tempSession.Flush();
 }
 }
}

Note that this method never commits or starts any database transactions; all it does is
execute additional INSERT statements on an existing ADO.NET connection and inside
the current database transaction. Using a temporary ISession for some operations on
the same ADO.NET connection and transaction is a handy technique you may also find
useful in other scenarios.

 The NHibernate way is powerful, simple, and easier to integrate. But there are
some kinds of operations that can’t work using it. In the case of audit logging, the
NHibernate way only logs operations per entity; you can’t log an operation affecting
many entities or unrelated to persistence. The bottom line is that you’ll probably use
both approaches.

 We encourage you to experiment and try different interceptor patterns. The NHi-
bernate website also has examples that use nested interceptors and log a complete his-
tory (including updated property and collection information) for an entity.

8.4.3 Other ways of integrating services

The approaches we’ve covered are common and simple to implement. But more com-
plex applications may require a more loosely coupled approach. In this section, we
introduce the Inversion of Control and Dependency Injection patterns. We also give
you a hint about how you can use a logging library to merge your logs with NHiber-
nate logs.

Listing 8.3 Temporary session pattern

Create new
session; reuse

open connection

Create and save
log record

284 CHAPTER 8 Developing NHibernate applications
INVERSION OF CONTROL AND DEPENDENCY INJECTION

It’s outside the scope of this book to cover these patterns in detail; but if you don’t
know about them, a brief introduction will be helpful. These patterns are designed to
avoid high coupling between services that address different concerns.

 Let’s take an example. In the auction application, ending an auction involves
updating the database, sending a notification to the winner, collecting the payment,
and dispatching the item. These steps require that you communicate with different
services. A high coupling between them may cripple the application’s manageability
and flexibility. Configuring and changing these services can become difficult.

 The Inversion of Control pattern solves this issue by externalizing the binding
between the application and the services. You define interfaces (contracts) to commu-
nicate with the services, and you use a configuration file (generally written in XML) to
specify the service to use for each interface. That way, you can change the service by
editing the configuration file.

 In the case of audit logging, you can create an interface called IAuditLog and
specify in the configuration file that the class (service) to use is the AuditLog class
defined in listing 8.3.

 Many libraries provide these features, and each has pros and cons. Two of the most
popular are Castle Windsor (http://www.castleproject.org/container/) and Spring.
NET (http://www.springframework.net/). There are many more, including Structure
Map, NInject and Unity. For more information, see http://en.wikipedia.org/wiki/
Dependency_injection.
INTEGRATING NHIBERNATE LOGGING

You may decide to use a logging library instead of or in addition to saving logs using NHi-
bernate. This kind of logging is generally used for maintenance rather than auditing.

 It’s easy to merge your logs with NHibernate logs using log4net. This library pro-
vides various destinations for the logs; it’s even possible to send them through email
or to save them in a database. But be aware of the performance costs.

 If you can’t use log4net, you have another option: wrap the log4net library to redi-
rect method calls, so you can switch from log4net to another solution like the Enter-
prise Library or the System.Diagnostics API.

 Although logging is a nonfunctional requirement that few users care about, logs
are invaluable when you’re debugging applications in production. Think twice before
deciding you don’t need to implement logging.

8.5 Summary
This chapter focused on application development and the integration issues you may
encounter when writing NHibernate applications. We first considered the practical
implementation of a layered application. We discussed how the domain model and
the business layer should be implemented and tested. We then discussed the persis-
tence layer and ended with the presentation layer.

http://www.castleproject.org/container/
http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Dependency_injection
http://www.springframework.net/

285Summary
 The next objective of this chapter was to help you integrate NHibernate applica-
tions into production environments. We talked about the medium-trust issue you may
encounter when developing web applications.

 After that, we summarized how NHibernate can help you achieve the standard
design goals of a .NET application. NHibernate has an impact on the way you design
an application, and careful use of its features can greatly improve the quality of your
application. We also gave you a few tips that can help you identify and solve bugs and
performance issues.

 In the last section of the chapter, we considered integrating services in an NHiber-
nate application. We discussed the pros and cons of the hard way and the NHibernate
way. We also talked about a few other alternatives.

 We implemented audit logging for persistent entities with an implementation of
the NHibernate IInterceptor interface. The custom interceptor uses a temporary
ISession trick to track modification events in an audit history table.

 You’re now ready to dig into the details of implementing the two layers directly
related to NHibernate: the domain-model layer and the persistence layer. These topics
are covered in the next two chapters.

Writing real-world
 domain models
Having read this book so far, you should be familiar with what a business entity
looks like, what a domain model is, and roughly how a domain model is formed.
Our examples have aimed to keep things simple, so we haven’t yet introduced you
to the processes and techniques that will help you tackle real-world projects.

 The first part of this chapter looks at the various starting points of an NHiber-
nate project and then explains how you can leverage automation and generation to
help build the other layers. Until now, you’ve been manually implementing entities
by hand. You can save much time by using the tools described here to automatically
generate domain-model entities, database schema, and even mapping definitions.

This chapter covers
■ Domain-model development processes
■ Legacy schema mapping
■ Understanding persistence ignorance
■ Implementing business logic
■ Data binding in the GUI
■ Obtaining DataSets from entities
286

287Development processes and tools
 One particularly tricky starting point is a legacy database that you can’t change.
Fortunately there are many mappings explained in this chapter that are especially use-
ful in that scenario.

 Once we’re finished describing the processes and tools around NHibernate devel-
opment, we’ll take a closer look at the domain model. Up to this point, this book’s
examples have involved entities that contain only data. This allowed us to demonstrate
how the mappings work for the purposes of saving and loading those entities. But the
domain-model pattern encourages you to create a much more behavior-rich domain
model that encapsulates business rules, validation, and workflow. Later in this chapter,
you’ll discover how these things can be achieved.

 Another aspect that we briefly touched earlier is persistence ignorance; certain proj-
ects may require that the domain model has no awareness of NHibernate, instead
focusing purely on business concerns. We look at what persistence ignorance means
and how you can structure your projects to realize it with NHibernate.

 Selecting and applying the techniques presented here, you’ll develop a fully func-
tional domain model that is well suited to your needs. The next trick is to get the
domain model to collaborate with the other layers, including the GUI. This will be the
focus of the two last sections, which explain how entities can be consumed in the pre-
sentation layer and how to fill DataSets with the content of an entity to allow compati-
bility with many GUI and reporting components.

 We’ll begin by discussing the possible starting points for an NHibernate project
and the development processes that may follow.

9.1 Development processes and tools
In the earlier chapters, you always started by defining the domain model before creat-
ing the database and setting up your mapping. What if you already have a database in
place, or even a mapping file? No rule says that things have to be done in any particu-
lar order, so we’ll present the different processes available and explain which projects
they suit best.

 You’ll find that once you’ve created either a database, a domain model, or
mapping files, NHibernate provides tools that can be used to generate the other rep-
resentations. Figure 9.1 shows the input
and output of tools used for NHiber-
nate development.

 Generally, you have to complete and
customize the generated code, but the
tools can give you a valuable head start.
We’ll review these tools and processes
in this section, starting with the top-
down approach.

Mapping
Metadata

Database
Schema

Pojo

NHibernate
Mapping Atributes

SchemaExport
(hbm2ddl)

Code Generator
(hbm2net)

MyGeneration
or CodeSmith

Figure 9.1 Development processes

288 CHAPTER 9 Writing real-world domain models
9.1.1 Top down: generating the mapping and the database from entities

The approach you’ve been using in this book is commonly called top-down development.
This is the most comfortable development style when you’re starting a new project
with no existing database to worry about.

 Looking at figure 9.1, the starting point is the Plain Old CLR Object (POCO).
When using this approach, you first build your .NET domain model, typically as
POCOs. If you’ve used the NHibernate.Mapping.Attributes library to decorate your
entities, you can use NHibernate to generate the mapping for you. Alternatively, you
can manually write it using an XML editor, as demonstrated throughout this book.

 With your entities and mapping file in place, you can let NHibernate’s hbm2ddl tool
generate the database schema for you, using the mapping metadata. This tool is part of
the NHibernate library. It isn’t a graphical tool; you access the features from your own
code by calling methods on the NHibernate.Tool.hbm2ddl.SchemaExport class.

 When you create your mapping with attributes or XML, you can add elements that
help SchemaExport create a database schema to your liking. These are optional; with-
out them, NHibernate will attempt to use sensible defaults when creating your data-
bases schema. If you decide to include extra mapping metadata, having the ability to
override naming strategies, data types, column sizes, and so on can be useful. Some-
times it’s necessary, especially if you want your generated schema to follow house rules
or your DBA’s requirements.

NOTE Using naming strategies was explained in section 3.4.7. This feature lets
you change the way entities’ names are converted into tables names.

We’ll now look at how you can prepare the mapping metadata to control database
schema generation.
PREPARING THE MAPPING METADATA

In this example, we’ve marked up the mapping for the Item class with hbm2ddl-spe-
cific attributes and elements. These optional definitions integrate seamlessly with the
other mapping elements, as you can see in listing 9.1.

<class name="Item" table="ITEM">
<id name="Id" type="String">
 <column name="ITEM_ID" sql-type="char(32)"/>
 <generator class="uuid.hex"/>
</id>
<property name="Name" type="String">
 <column name="NAME"
 not-null="true"
 length="255"
 index="IDX_ITEMNAME"/>
</property>
<property name="Description"

Listing 9.1 Additional elements in the Item mapping for SchemaExport

B

C

289Development processes and tools
 type="String"
 column="DESCRIPTION"
 length="4000"/>
<property name="InitialPrice"
 type="MonetaryAmount">
 <column name="INITIAL_PRICE" check="INITIAL_PRICE > 0"/>
 <column name="INITIAL_PRICE_CURRENCY"/>
</property>
<set name="Categories" table="CATEGORY_ITEM" cascade="none">
 <key>
 <column="ITEM_ID" sql-type="char(32)"/>
 </key>
 <many-to-many class="Category">
 <column="CATEGORY_ID" sql-type="char(32)/>
 </many-to-many>
</set>
...
</class>

hbm2ddl automatically generates an NVARCHAR typed column if a property (even the
identifier property) is of mapping type String. You know the identifier generator
uuid.hex always generates strings that are 32 characters long; you use a CHAR SQL
type and set its size fixed at 32 characters B. The nested <column> element is
required for this declaration because there is no attribute to specify the SQL data type
on the <id> element.

 The column, not-null, and length attributes are also available on the <property>
element; but because you want to create an additional index in the database, you
again use a nested <column> element C. This index will speed your searches for items
by name. If you reuse the same index name on other property mappings, you can cre-
ate an index that includes multiple database columns. The value of this attribute is
also used to name the index in the database catalog.

 For the description field, we chose the lazy approach, using the attributes on the
<property> element instead of a <column> element. The DESCRIPTION column will be
generated as VARCHAR(4000) D.

 The custom user-defined type MonetaryAmount requires two database columns to
work with. You have to use the <column> element. The check attribute E triggers the
creation of a check constraint; the value in that column must match the given arbitrary
SQL expression. Note that there is also a check attribute for the <class> element,
which is useful for multicolumn check constraints.

 A <column> element can also be used to declare the foreign key fields in an associ-
ation mapping. Otherwise, the columns of your association table CATEGORY_ITEM
would be NVARCHAR(32) instead of the more appropriate CHAR(32) type F.

 We’ve grouped all attributes relevant for schema generation in table 9.1; some of
them weren’t included in the previous Item mapping example.

 After you’ve reviewed (probably together with a DBA) your mapping files and
added schema-related attributes, you can create the schema.

D

E

F

290 CHAPTER 9 Writing real-world domain models
CREATING THE SCHEMA

The hbm2ddl tool is instrumented using an instance of the class SchemaExport. Here’s
an example:

Configuration cfg = new Configuration();
cfg.Configure();
SchemaExport schemaExport = new SchemaExport(cfg);
schemaExport.Create(false, true);

This example creates and initializes an NHibernate configuration. Then it creates an
instance of SchemaExport that uses the mapping and database-connection properties

Table 9.1 XML mapping attributes for hbm2ddl

Attribute Value Description

column string Usable in most mapping elements; declares the name of the SQL col-
umn. hbm2ddl (and NHibernate’s core) defaults to the name of the
.NET property if the column attribute is omitted and no nested
<column> element is present. You can change this behavior by
implementing a custom INamingStrategy; see section 3.4.7.

not-null true/false Forces the generation of a NOT NULL column constraint. Available
as an attribute on most mapping elements and also on the dedi-
cated <column> element.

unique true/false Forces the generation of a single-column UNIQUE constraint. Avail-
able for various mapping elements.

length integer Can be used to define a “length” of a data type. For example,
length="4000" for a string mapped property generates an
NVARCHAR(4000) column. Also used to define the precision of
decimal types.

index string Defines the name of a database index that can be shared by multi-
ple elements. An index on a single column is also possible. Only
available with the <column> element.

unique-key string Enables unique constraints involving multiple database columns.
All elements using this attribute must share the same constraint
name to be part of a single constraint definition. A <column> ele-
ment-only attribute.

sql-type string Overrides hbm2ddl’s automatic detection of the SQL data type;
useful for database specific data types. Be aware that this effec-
tively prevents database independence: hbm2ddl will automati-
cally generate a VARCHAR or VARCHAR2 (for Oracle), but it will
always use a declared SQL-type instead, if present. Can only be
used with the dedicated <column> element.

foreign-key string Names a foreign-key constraint, available for <many-to-one>,
<one-to-one>, <key>, and <many-to-many> mapping ele-
ments. Note that inverse="true" sides of an association
mapping aren’t considered for foreign key naming—only the non-
inverse side. If no names are provided, NHibernate generates
unique random names.

291Development processes and tools
of the configuration to generate and execute the SQL commands that create the
tables of the database.

 Here is the public interface of this class, with a brief description of each method:

public class SchemaExport
{
 public SchemaExport(Configuration cfg);
 public SchemaExport(Configuration cfg, IDictionary
 connectionProperties);

 public SchemaExport SetOutputFile(string filename);

 public SchemaExport SetDelimiter(string delimiter);

 public void Create(bool script, bool export);

 public void Drop(bool script, bool export);

 public void Execute(bool script, bool export,
 bool justDrop, bool format);
 public void Execute(bool script, bool export,
 bool justDrop, bool format,
 IDbConnection connection, TextWriter exportOutput);
}

Table 9.2 explains the meaning of the parameters of the Execute() methods.

This tool is indispensable when you’re applying TDD (explained in 8.1.1) because it
frees you from manually modifying the database whenever the mapping changes. All
you have to do is call it before running your tests, and you’ll get a fresh, up-to-date
database to work on. Note that it’s also available as an NAnt task: NHiber-
nate.Tasks.Hbm2DdlTask. For more details, read its API documentation.

 Using this tool throughout a project requires some thought, because the database
is re-created each time—which scraps any data. We’ll describe some workarounds in
section 9.1.4.
EXECUTING ARBITRARY SQL DURING DATABASE GENERATION

If you need to execute arbitrary SQL statements when generating your database, you
can add them to your mapping document. This is especially useful to create triggers
and stored procedures used in the mapping.

Table 9.2 hbm2ddl.SchemaExport.Execute() parameters

Parameter Description

script Outputs the generated script to the console

export Executes the generated script against the database

justDrop Only drops the tables and cleans the database

format Formats the generated script nicely instead of using one row for each statement

connection Specifies the opened database connection to use when export is true

exportOutput Outputs the generated script to this writer

Specifies database-
connection properties

Writes generated
script to this file

Sets SQL end-of-
statement delimiter

Runs create-schema script

Runs drop-
schema script

Executes
drop and
create DDL
scripts

292 CHAPTER 9 Writing real-world domain models
 You write these statements in <database-object> elements. If they’re in the <cre-
ate> sub-element, they’re executed when creating the database. Otherwise, they’re in
the <drop> sub-element, and they’re executed when dropping the database.

 Here’s an example:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">
 <database-object>
 <create>
 CREATE PROCEDURE FindItems_SP AS
 SELECT ITEM_ID, NAME, INITIAL_PRICE, INITIAL_PRICE_CURRENCY,
 ...
 FROM ITEM
 </create>
 <drop>
 DROP PROCEDURE FindItems_SP
 </drop>
 </database-object>
 <dialect-scope name="NHibernate.Dialect.MsSql2005Dialect"/>
 <dialect-scope name="NHibernate.Dialect.MsSql2000Dialect"/>
</hibernate-mapping>

This example provides the code required to create and drop the stored procedure
used at the end of section 7.6.2.

 Because these SQL statements can be dialect-dependent, it’s also possible to use
<dialect-scope> to specify the dialect for which they must be executed. In the previ-
ous example, the code is executed only on SQL Server databases.

 The top-down approach is a comfortable route for many developers, especially
when working on a new project with no existing database in place. We now look at the
middle-out approach, where you generate entities from the mapping file.

9.1.2 Middle out: generating entities from the mapping

Referring back to figure 9.1, this approach starts in the middle box: the mapping doc-
uments. These provide sufficient information to deduce the DDL schema and to gen-
erate working POCOs for your domain model. NHibernate has tools to support this
middle-out development, so you can take your handwritten NHibernate mapping docu-
ments and generate the DDL using hbm2ddl, and you can generate the .NET domain-
model code using code-generation tools. This approach is appealing primarily when
you’re migrating from existing NHibernate mappings (used by a .NET application).

 When it comes to generating entities from your mapping documents, NHibernate
provides a tool called hbm2net. It’s similar to hbm2ddl; but it’s available as a separate
library along with a console application (NHibernate.Tool.hbm2net.Console) and an
NAnt task (NHibernate.Tasks.Hbm2NetTask).

 Before using this tool, you must make sure your mapping provides all the required
information, such as the properties’ types. Then you can execute it using its Code-
Generator class:

string[] args = new string[] {
 "--config=hbm2net.config", "--output=DomainModel", "*.hbm.xml" };
NHibernate.Tool.hbm2net.CodeGenerator.Main(args);

293Development processes and tools
Here’s the equivalent using its console application:

NHibernate.Tool.hbm2net.Console.exe
 --config=hbm2net.config --output=DomainModel *.hbm.xml

This code generates a C# class for each mapping document in the current directory
and saves it in the DomainModel directory. The content of the hbm2net.config file
looks like this:

<?xml version="1.0" ?>
<codegen>
 <meta attribute="implements">
 NHibernateInAction.CaveatEmptor.Persistence.Audit.IAuditable
 </meta>
 <generate
 renderer="NHibernate.Tool.hbm2net.BasicRenderer"/>
 <generate
 renderer="NHibernate.Tool.hbm2net.FinderRenderer"
 suffix="Finder" />
</codegen>

The generated C# classes inherit from the specified IAuditable interface. Renderers
are used to generate specific parts of the C# class; there is even a VelocityRenderer,
based on the NVelocity library, which allows you to use a template. Refer to their API
documentation for more details.

 Note that this tool isn’t as complete as Hibernate’s hbm2java; refer to the latter’s
documentation for more details.

 Most .NET developers feel more comfortable using top-down development with an
attribute library like NHibernate.Mapping.Attributes, which gives maximum con-
trol; or, they prefer to use bottom-up development when there is an existing data model.

9.1.3 Bottom up: generating the mapping and the entities
from the database

Bottom-up development begins with an existing database schema and data model. It’s
depicted as the Database Schema box in figure 9.1 In this case, you use code-genera-
tion tools to generate the mapping files and .NET code from the metadata of the data-
base schema.

 The following tools are known for their ability to generate NHibernate mapping
documents and skeletal POCO persistent classes (data containers with fields and sim-
ple implementation of properties, but no logic):

■ MyGeneration —A free .NET code generator. See http://www.mygenerationsoft-
ware.com/. Comes with a simple NHibernate template that you can customize
at will.

■ CodeSmith —Similar to MyGeneration; available in free and commercial edi-
tions. See http://www.codesmithtools.com/.

■ ActiveWriter —A work-in-progress Visual Studio add-in; see http://www.altinoren.
com/activewriter/. Has the benefit of being visually appealing, and provides
entities with ActiveRecord attributes.

http://www.mygenerationsoftware.com/
http://www.mygenerationsoftware.com/
http://www.codesmithtools.com/
http://www.altinoren.com/activewriter/
http://www.altinoren.com/activewriter/

294 CHAPTER 9 Writing real-world domain models
You’ll usually have to enhance and modify the generated NHibernate mapping by
hand, because not all class association details and .NET-specific meta-information can
be automatically generated from a SQL schema.

This type of code generation is generally template-based: you write a template describ-
ing your mapping and POCO with placeholders (for the names, types, and so on). The
code generator executes this template for each table in the database. This process is
intuitive. It’s even possible to preserve hand-written regions of code that aren’t over-
written when regenerating the classes. Or even better, use partial classes to separate
generated code from your hand-written code.

9.1.4 Automatic database schema maintenance

Once you’ve deployed an application and its database for the first time, you’re chal-
lenged with rolling out future changes as new versions of your software are released.
This is often difficult when working with databases because you need to determine
how to safely roll out all the schema changes made during development without los-
ing data (or too much sleep). How do you know which database changes were made
during development? And how can you safely apply these to live databases?

What if I have an existing database and an existing class model?
We call this the meet-in-the-middle approach. It isn’t shown in figure 9.1, but essen-
tially you have an existing set of .NET classes and an existing database schema. As
you can imagine, it’s hard to map arbitrary domain models to a given schema, so this
should be attempted only if absolutely necessary.

The meet-in-the-middle scenario usually requires at least some refactoring of the .NET
classes, database schema, or both. The mapping document must almost certainly
be written by hand (although it’s possible to use NHibernate.Mapping.Attributes).
This is an incredibly painful scenario that is, fortunately, exceedingly rare.

If you try to use this scenario, don’t hesitate to take full advantage of the numerous
extension interfaces of NHibernate. They were introduced in section 2.2.4.

Is it a bad thing to write anemic domain models?
As explained in section 8.1.3, a domain model is made of data and behavior. When
using a simplistic code generator, you may be tempted to write your domain model
as a data container and move all the behavior to other layers. In this case, your do-
main model is said to be anemic (see http://en.wikipedia.org/wiki/Anemic_
Domain_Model).

This isn’t necessarily a bad thing. This approach may work well for simple applica-
tions. But it goes against the basic idea of object-oriented design. The behavior may
not be correctly represented in other layers, leading to code duplication and other is-
sues. Worse, it may end up in the wrong layers (such as the presentation layer).

http://en.wikipedia.org/wiki/Anemic_Domain_Model
http://en.wikipedia.org/wiki/Anemic_Domain_Model

295Development processes and tools
UPDATING LIVE DATABASES

NHibernate comes bundled with a tool called SchemaUpdate. It’s used to modify an
existing SQL database schema, dropping obsolete objects and adding new ones as
needed. At the time of writing, SchemaUpdate isn’t ready for use against production
databases. It can potentially delete data, and it doesn’t support more advanced fea-
tures such as data transformations and safe column renaming. But the tool is useful
during development. It can be great for keeping development and test databases in
sync with your domain model, and it’s faster than using SchemaExport, which creates
your database from scratch each time. We want to discuss ways of automatically main-
tain live databases, so lets look at some other options.

 One option is to use a commercial product that can compare live and develop-
ment database schemas and then generate SQL commands to safely migrate between
the two. Some tools can also handle data migration. A few recommended commercial
tools include Red Gate’s Sql Compare and Data Compare, Sql Delta, and Microsoft’s
Data Professional tools.

 If you don’t want to take this route, a simple solution is to manually write a SQL
migration script as you develop the application and database. In this script, you keep a
log of each command used to tweak the database during development. At deployment
time, you can then run this migration SQL script against live databases to apply all the
updates. This approach has its drawbacks. It isn’t cross-database compliant, and
despite being simple, it’s tedious, and we don’t recommend it.

 Perhaps one of the best approaches to handling schema changes during both
development and live deployment is to use a dedicated migrations library. Migrator is
one open source example (http://code.macournoyer.com/migrator), as is LiquiBase
(http://www.liquibase.org/); another is the migrations built into Ruby on Rails,
which some people are also using with .NET. Others may also be available.

 Database migrations libraries work on the principle that, each time you want to
change your development schema, you do so using the migrations library. It automati-
cally keeps track of the changes so they can be applied to any database to bring it up
to date.

 Here’s a simple example:

DatabaseSystem.AddUpdate(1.0, 1.1, new string[] {"SQL statements..."});

When a database must be updated, this system will read its current version and only
execute the changes done since the last update.

 These tools usually support rolling back to previous versions. Exploring these tools
in full is beyond the scope of this book, but we strongly recommend that you look into
them, starting with the ones we’ve mentioned here.
DEVELOPMENT DATABASES

Schema-maintenance problems also occur during development, even before you roll
out to any live databases. A common scenario involves lots of test data, which you want
to be sure is inserted correctly each time you change the schema.

 Migrations libraries are an excellent choice for achieving this, but you may have
decided to generate your database schema using hbm2ddl rather than a separate

http://code.macournoyer.com/migrator
http://www.liquibase.org/

296 CHAPTER 9 Writing real-world domain models
library. With hbm2ddl, you can drop and re-create your test databases regularly during
development, and you don’t have to worry about adding, renaming, or removing
things—the schema is built from scratch whenever needed. But how do you insert test
data each time?

 One option is to keep a bunch of SQL scripts that insert the test data into the data-
base and run them each time you re-create the database. The downside is that you’ll
need to update these scripts to match each change of schema, which can be time con-
suming if you have thousands of insert statements.

 Another option is to have a .NET program that creates entities for test purposes
and then persists them to the database using NHibernate. Effectively, you’re replacing
the SQL script with a .NET application. One benefit is that you can lean on refactoring
tools to handle changes to class properties, and you won’t have to edit cumbersome
SQL scripts manually. The ObjectMother pattern lends itself well to this approach,
where you have an object dedicated to creating test and reference data that can be
used by several tests. You can learn more about that at http://martinfowler.com/
bliki/ObjectMother.html.

 So far, this chapter has focused on top-down, middle-out, and bottom-up
approaches to developing your application with NHibernate that let you start with an
existing domain model, some mapping files, or an existing database schema. We’ve
also introduced you to the concept of migrations and how they can help you manage
your evolving database throughout the development process. We’ll now look more at
the bottom-up scenario discussed in 9.1.3, in which you start the project with an exist-
ing database schema. In particular, we’ll focus on legacy databases whose schema
you’re often unable to change to fit your needs. This scenario often comes with its
own set of problems, so we’ll explain how you can tackle some of them when working
with legacy schemas.

9.2 Legacy schemas
Some data requires special treatment in addition to the general principles we’ve dis-
cussed in the rest of the book. In this section, we’ll describe important kinds of data
that introduce extra complexity into your NHibernate code.

 When your application inherits an existing legacy database schema, you should
make as few changes to the existing schema as possible. Every change you make can
break other existing applications that access the database and require expensive
migration of existing data. In general, it isn’t possible to build a new application and
make no changes to the existing data model—a new application usually means addi-
tional business requirements that naturally require evolution of the database schema.

 We’ll therefore consider two types of problems: problems that relate to changing
business requirements (which generally can’t be solved without schema changes) and
problems that relate only to how you wish to represent the same business problem
in your new application (which can usually—but not always—be solved without data-
base schema changes). You can usually spot the first kind of problem by looking at the

http://martinfowler.com/bliki/ObjectMother.html
http://martinfowler.com/bliki/ObjectMother.html

297Legacy schemas
logical data model. The second type more often relates to the implementation of the
logical data model as a physical database schema.

 If you accept this observation, you’ll see that the kinds of problems that require
schema changes are those that call for addition of new entities, refactoring of existing
entities, addition of new attributes to existing entities, and modification of the associa-
tions between entities. The problems that can be solved without schema changes usu-
ally involve inconvenient column definitions for a particular entity.

 Let’s now concentrate on the second kind of problems. These inconvenient col-
umn definitions most commonly fall into two categories:

■ Use of natural (especially composite) keys
■ Inconvenient column types

We’ve mentioned that we think natural primary keys are a bad idea. Natural keys often
make it difficult to refactor the data model when business requirements change. They
may even, in extreme cases, impact performance. Unfortunately, many legacy schemas
use (natural) composite keys heavily, and, for the reason that we discourage the use of
composite keys, it may be difficult to change the legacy schema to use surrogate keys.
Therefore, NHibernate supports the use of natural keys. If the natural key is a compos-
ite key, support is via the <composite-id> mapping.

 The second category of problems can usually be solved using a custom NHibernate
mapping type (implementing the interface IUserType or ICompositeUserType), as
described in chapter 7.

 Let’s look at some examples that illustrate the solutions for both problems. We’ll
start with natural key mappings.

9.2.1 Mapping a table with a natural key

Your USER table has a synthetic primary key, USER_ID, and a unique key constraint on
USERNAME. Here’s a portion of the NHibernate mapping:

<class name="User" table="USER">
 <id name="Id" column="USER_ID">
 <generator class="native"/>
 </id>
 <version name="Version"
 column="VERSION"/>
 <property name="Username"
 column="USERNAME"
 unique="true"
 not-null="true"/>
 ...
</class>

Notice that a synthetic identifier mapping may specify an unsaved-value, allowing
NHibernate to determine whether an instance is a detached instance or a new tran-
sient instance. Hence, the following code snippet may be used to create a new persis-
tent user:

298 CHAPTER 9 Writing real-world domain models
User user = new User();
user.Username = "john";
user.Firstname = "John";
user.Lastname = "Doe";
session.SaveOrUpdate(user); Generates id value by side-effect
System.Console.WriteLine(session.GetIdentifier(user)); Prints 1
session.Flush();

If you encounter a USER table in a legacy schema, USERNAME is probably the primary
key. In this case, you have no synthetic identifier; instead, you use the assigned identi-
fier generator strategy to indicate to NHibernate that the identifier is a natural key
assigned by the application before the object is saved:

<class name="User" table="USER">
 <id name="Username" column="USERNAME">
 <generator class="assigned"/>
 </id>
 <version name="Version"
 column="VERSION"
 unsaved-value="-1"/>
 ...
</class>

You can no longer take advantage of the unsaved-value attribute in the <id> map-
ping. An assigned identifier can’t be used to determine whether an instance is
detached or transient—because it’s assigned by the application. Instead, you specify
an unsaved-value mapping for the <version> property. Doing so achieves the same
effect by essentially the same mechanism. The code to save a new User isn’t changed:

User user = new User();
user.Username = "john";
Auser.Firstname = "John";
user.Lastname = "Doe";
session.SaveOrUpdate(user);
System.Console.WriteLine(session.GetIdentifier(user));
session.Flush();

But you have to change the declaration of the version property in the User class to
assign the value -1 (private int version = -1).

 If a class with a natural key doesn’t declare a version or timestamp property, it’s
more difficult to get SaveOrUpdate() and cascades to work correctly. You can use a
custom NHibernate IInterceptor, as discussed later in this chapter. (On the other
hand, if you’re happy to use explicit Save() and explicit Update() instead of Save-
OrUpdate() and cascades, NHibernate doesn’t need to be able to distinguish between
transient and detached instances, and you can safely ignore this advice.)

 Composite natural keys extend the same ideas.

9.2.2 Mapping a table with a composite key

As far as NHibernate is concerned, a composite key may be handled as an assigned
identifier of value type (the NHibernate type is a component). Suppose the primary

Assigns “john” as primary key

Saves rather
than updates Prints “john”,

identifier of
object

299Legacy schemas
key of your user table consisted of USERNAME and ORGANIZATION_ID. You could add
a property named OrganizationId to the User class:

[Class(Table="USER")]
public class User {
 [CompositeId]
 [KeyProperty(1, Name="Username", Column="USERNAME")]
 [KeyProperty(2, Name="OrganizationId", Column="ORGANIZATION_ID")]
 public string Username { ... }
 public int OrganizationId { ... }
 [Version(Column="VERSION", UnsavedValue="0")]
 public int Version { ... }
 //...
}

Here is the corresponding XML mapping:

<class name="User" table="USER">
 <composite-id>
 <key-property name="Username"
 column="USERNAME" />
 <key-property name="OrganizationId"
 column="ORGANIZATION_ID" />
 </composite-id>
 <version name="Version"
 column="VERSION"
 unsaved-value="0" />
 ...
</class>

The code to save a new User would look like this:

User user = new User();
user.Username = "john";
user.OrganizationId = 37;
user.Firstname = "John";
user.Lastname = "Doe";
session.SaveOrUpdate(user); // will save, since version is 0
session.Flush();

But what object could you use as the identifier when you called Load() or Get()? It’s
possible to use an instance of the User:

User user = new User();
user.Username = "john";
user.OrganizationId = 37;
session.Load(user, user);

In this code snippet, User acts as its own identifier class. Note that you now have to
implement Equals()and GetHashCode() for this class (and make it Serializable).
You can change that by using a separated class as identifier.
USING A COMPOSITE IDENTIFIER CLASS

It’s much more elegant to define a separate composite identifier class that declares just
the key properties. Let’s call this class UserId:

300 CHAPTER 9 Writing real-world domain models
[Serializable] public class UserId {
 private string username;
 private string organizationId;
 public UserId(string username, string organizationId) {
 this.username = username;
 this.organizationId = organizationId;
 }
 // Properties here...
 public override bool Equals(object o) {
 if (o == null) return false;
 if (object.ReferenceEquals(this, o)) return true;
 UserId userId = o as UserId;
 if (userId == null) return false;
 if (organizationId != userId.OrganizationId)
 return false;
 if (username != userId.Username)
 return false;
 return true;
 }
 public override int GetHashCode() {
 return username.GetHashCode() + 27 * organizationId.GetHashCode();
)
}

It’s critical that you implement Equals() and GetHashCode() correctly, because NHi-
bernate uses these methods to do cache lookups. Furthermore, the hash code must be
consistent over time. This means that if the column USERNAME is case insensitive, it
must be normalized (to uppercase/lowercase strings). Composite key classes are also
expected to be Serializable.

 Now you’d remove the UserName and OrganizationId properties from User and
add a UserId property. You’d use the following mapping:

<class name="User" table="USER">
 <composite-id name="UserId" class="UserId">
 <key-property name="UserName"
 column="USERNAME"/>
 <key-property name="OrganizationId"
 column="ORGANIZATION_ID"/>
 </composite-id>
 <version name="Version"
 column="VERSION"
 unsaved-value="0"/>
 ...
 </class>

You could save a new instance using this code:

User user = new User();
user.UserId = new UserId("john", 42);
user.Firstname = "John";
user.Lastname = "Doe";
session.SaveOrUpdate(user); // will save, since version is 0
session.Flush();

301Legacy schemas
The following code shows how to load an instance:

UserId id = new UserId("john", 42);
User user = (User) session.Load(typeof(User), id);

Now, suppose ORGANIZATION_ID was a foreign key to the ORGANIZATION table, and
that you wished to represent this association in your C# model. Our recommended
way to do this would be to use a <many-to-one> association mapped with
insert="false" update="false", as follows:

<class name="User" table="USER">
 <composite-id name="UserId" class="UserId">
 <key-property name="UserName"
 column="USERNAME"/>
 <key-property name="OrganizationId"
 column="ORGANIZATION_ID"/>
 </composite-id>
 <version name="Version"
 column="VERSION"
 unsaved-value="0"/>
 <many-to-one name="Organization"
 class="Organization"
 column="ORGANIZATION_ID"
 insert="false" update="false"/>
 ...
</class>

This use of insert="false" update="false" tells NHibernate to ignore that prop-
erty when updating or inserting a User, but you may of course read it with john.
Organization.

 An alternative approach would be to use a <key-many-to-one>:

<class name="User" table="USER">
 <composite-id name="UserId" class="UserId">
 <key-property name="UserName"
 column="USERNAME"/>
 <key-many-to-one name="Organization"
 class="Organization"
 column="ORGANIZATION_ID"/>
 </composite-id>
 <version name="Version"
 column="VERSION"
 unsaved-value="0"/>
 ...
</class>

But it’s usually inconvenient to have an association in a composite identifier class, so
this approach isn’t recommended except in special circumstances.
REFERENCING AN ENTITY WITH A COMPOSITE KEY

Because USER has a composite primary key, any referencing foreign key is also com-
posite. For example, the association from Item to User (the seller) is now mapped to a
composite foreign key. To our relief, NHibernate can hide this detail from the C#
code. You can use the following association mapping for Item:

302 CHAPTER 9 Writing real-world domain models
<many-to-one name="Seller" class="User">
 <column name="USERNAME"/>
 <column name="ORGANIZATION_ID"/>
</many-to-one>

Any collection owned by the User class will also have a composite foreign key—for
example, the inverse association, Items, sold by this user:

<set name="Items" lazy="true" inverse="true">
 <key>
 <column name="USERNAME"/>
 <column name="ORGANIZATION_ID"/>
 </key>
 <one-to-many class="Item"/>
</set>

Note that the order in which columns are listed is significant and should match the
order in which they appear inside the <composite-id> element.

 Let’s turn to our second legacy schema problem: inconvenient columns.

9.2.3 Using a custom type to map legacy columns

The phrase inconvenient column type covers a broad range of problems: for example,
use of the CHAR (instead of VARCHAR) column type, use of a VARCHAR column to repre-
sent numeric data, and use of a special value instead of a SQL NULL. It’s straight-
forward to use an IUserType implementation to handle legacy CHAR values (by
trimming the string returned by the ADO.NET data reader), to perform type
conversions between numeric and string data types, or to convert special values
to a C# null. We won’t show code for any of these common problems; we’ll leave
that to you—they’re all easy if you study section 6.1, “Creating custom mapping
types,” carefully.

 We’ll look at a slightly more interesting problem. So far, your User class has two
properties to represent a user’s names: Firstname and Lastname. As soon as you add
an Initial property, your User class will become messy. Thanks to NHibernate’s com-
ponent support, you can easily improve your model with a single Name property of a
new Name C# type (which encapsulates the details).

 Also suppose that the database includes a single NAME column. You need to map
the concatenation of three different properties of Name to one column. The following
implementation of IUserType demonstrates how this can be accomplished (we make
the simplifying assumption that the Initial is never null):

public class NameUserType : IUserType {
 private static readonly NHibernate.SqlTypes.SqlType[] SQL_TYPES =
 {NHibernate.NHibernateUtil.AnsiString.SqlType};
 public NHibernate.SqlTypes.SqlType[] SqlTypes { get { return SQL_TYPES;
 } }
 public Type ReturnedType { get { return typeof(Name); } }
 public bool IsMutable {
 get { return true; }
 }

303Legacy schemas
 public object DeepCopy(object value) {
 Name name = (Name) value;
 return new Name(name.Firstname,
 name.Initial,
 name.Lastname);
 }
 new public bool Equals(object x, object y) {
 // use equals() implementation on Name class
 return x==null ? y==null : x.Equals(y);
 }
 public object NullSafeGet(IDataReader dr, string[] names, object owner)
 {
 string dbName =
 (string) NHibernateUtil.AnsiString.NullSafeGet(dr, names);
 if (dbName==null) return null;
 string[] tokens = dbName.Split();
 Name realName =
 new Name(tokens[0],
 tokens[1],
 tokens[2]);
 return realName;
 }
 public void NullSafeSet(IDbCommand cmd, object obj, int index) {
 Name name = (Name) obj;
 String nameString = (name==null) ?
 null :
 name.Firstname
 + ' ' + name.Initial
 + ' ' + name.Lastname;
 NHibernateUtil.AnsiString.NullSafeSet(cmd, nameString, index);
 }
}

Notice that this implementation delegates to one of the NHibernate built-in types for
some functionality. This is a common pattern, but it isn’t a requirement.

 We hope you can now see how many different kinds of problems having to do with
inconvenient column definitions can be solved by clever user of NHibernate custom
types. Remember that every time NHibernate reads data from an ADO.NET IData-
Reader or writes data to an ADO.NET IDbCommand, it goes via an IType. In almost every
case, that IType can be a custom type. (This includes associations—an NHibernate
ManyToOneType, for example, delegates to the identifier type of the associated class,
which may be a custom type.)

 One further problem often arises in the context of working with legacy data: inte-
grating database triggers.

9.2.4 Working with triggers

There are some reasonable motivations for using triggers even in a brand-new data-
base; legacy data isn’t the only context in which problems arise. Triggers and ORM are
often a problematic combination. It’s difficult to synchronize the effect of a trigger
with the in-memory representation of the data.

304 CHAPTER 9 Writing real-world domain models
 Suppose the ITEM table has a CREATED column mapped to a Created property of
type DateTime, which is initialized by an insert trigger. The following mapping is
appropriate:

<property name="Created"
 type="Timestamp"
 column="CREATED"
 insert="false"
 update="false"/>

Notice that you map this property insert="false" and update="false" to indicate
that it isn’t to be included in SQL INSERTs or UPDATEs.

 After saving a new Item, NHibernate won’t be aware of the value assigned to this
column by the trigger, because the value is assigned after the INSERT of the item row.
If you need to use the value in your application, you have to tell NHibernate explicitly
to reload the object with a new SQL SELECT:

Item item = new Item();
//...
NHibernateHelper.BeginTransaction();
ISession session = NHibernateHelper.Session;
session.Save(item);
session.Flush();
Asession.Refresh(item);
System.Console.WriteLine(item.Created);
NHibernateHelper.CommitTransaction();
NHibernateHelper.CloseSession();

Most problems involving triggers may be solved this way, using an explicit Flush() to
force immediate execution of the trigger, perhaps followed by a call to Refresh() to
retrieve the result of the trigger.

 You should be aware of one special problem when you’re using detached objects
with a database with triggers. Because no snapshot is available when a detached object
is reassociated with a session using Update() or SaveOrUpdate(), NHibernate may
execute unnecessary SQL UPDATE statements to ensure that the database state is com-
pletely synchronized with the session state. This may cause an UPDATE trigger to fire
inconveniently. You can avoid this behavior by enabling select-before-update in the
mapping for the class that is persisted to the table with the trigger. If the ITEM table
has an update trigger, you can use the following mapping:

<class name="Item"
 table="ITEM"
 select-before-update="true">
 ...
</class>

This setting forces NHibernate to retrieve a snapshot of the current database state
using a SQL SELECT, enabling the subsequent UPDATE to be avoided if the state of the
in-memory Item is the same.

 Let’s summarize our discussion of legacy data models. NHibernate offers several
strategies to deal with (natural) composite keys and inconvenient columns. But our

Forces insert

Reloads object
with SELECT

305Understanding persistence ignorance
recommendation is that you carefully examine whether a schema change is possible.
In our experience, many developers immediately dismiss database schema changes as
too complex and time consuming, and they look for an NHibernate solution. Some-
times this opinion isn’t justified, and we urge you to consider schema evolution as a
natural part of your data’s lifecycle. If making table changes and exporting/importing
data solves the problem, one day of work may save you many days in the long
run—when workarounds and special cases become a burden.

 Now that you’re finished developing and mapping the data side of the domain
model, it’s time to dig into its behavior: specifically, how much it’s supposed to know
about persistence.

9.3 Understanding persistence ignorance
In the description of the layers of an NHibernate application (section 8.1.3), we high-
lighted the fact that the domain model shouldn’t depend on any other layer or service
(although this isn’t a strict rule). This is important because it influences its portability;
the less coupling an entity has, the easier it is to modify, test, and reuse.

 This recommendation leads to the notion of persistence ignorance (PI). A persis-
tence-ignorant entity has no knowledge of the way it’s persisted (it doesn’t even know
that it can be persisted). Practically speaking, the entity doesn’t have methods like
Save() or static (factory) methods like Load(), and it doesn’t have any reference to
the persistence layer. This is already the case for the entities you’ve been writing in
this book.

 Going one step further, we can also say that entities shouldn’t have Identifier
and Version properties. The argument is that primary keys and optimistic control
have nothing to do with the business domain, and therefore don’t belong in the
domain model. We usually wouldn’t go this far; the convenience of having these prop-
erties far outweighs the slight “pollution” of the domain model they introduce.

 Note that PI isn’t a requirement for all solutions, and you may find it easier to
develop solutions without it. However, we do consider PI a good thing to strive for as it
creates a less coupled, more testable and maintainable domain model. It’s particularly
useful when the domain model explicitly requires portability and flexibility.

 Now let’s see how you can implement an entity that is as free as possible of persis-
tence-related code while still being functional and simple.

9.3.1 Abstracting persistence-related code

A common compromise, at the level of persistence awareness, is to separate persis-
tence-related code from the business code in the implementation of an entity. This
can be as trivial as performing a visual separation using a #region in your code, to
help improve readability. Another option is to create an abstract base class for each
entity so that persistent code is separated.

 Let’s look at how you can implement the latter solution. You’ll use NHibernate.
Mapping.Attributes because it lets the base class abstract the mapping information
along with the code. You’ll see that the end result can be acceptable as long as you

306 CHAPTER 9 Writing real-world domain models
don’t mind inheriting from this base class (if you do mind, copy the content of this
class in your entities). Note that this implementation presents many independent
ideas and patterns; feel free to extract some of them for your applications.

 You’ll implement an abstract class from which entities can inherit to gain the per-
sistence-related code they need. This class will provide an identifier and a version
property along with proper overloading of System.Object methods. You’ll call this
class VersionedEntity; listing 9.2 shows its implementation.

[Serializable]
public abstract class VersionedEntity {
 private Guid id = Guid.NewGuid();
 private int version = 0;
 [Id(Name = "Id", Access = "nosetter.camelcase-underscore")]
 [Generator(1, Class = "assigned")]
 public virtual Guid Id {
 get { return id; }
 }
 [Version(Access = "nosetter.camelcase-underscore")]
 public virtual int Version {
 get { return version; }
 }
 public override string ToString() {
 return GetType().FullName + "#" + Id;
 }
 public override bool Equals(object obj) {
 VersionedEntity entity = obj as VersionedEntity;
 if (entity == null) return false;
 return Id == entity.Id;
 }
 public override int GetHashCode() {
 return Id.GetHashCode();
 }
}

Using an assigned Guid as identifier B provides many advantages. For example, it sim-
plifies the implementation of Equals() and GetHashCode(). The version C is used
for optimistic concurrency control, explained in section 5.2.1. The implementations
of System.Object methods D are simple but effective.

 Note that you can replace the initialization of the identifier as follows:

private Guid id
 = (Guid) new NHibernate.Id.GuidCombGenerator().Generate(null,null);

This initialization uses the guid.comb identifier generator. You can read about its
advantages in table 3.5 of chapter 3, section 3.5.3.

 If you don’t want to reference NHibernate here in your business layer, you can create
a private static method in VersionedEntity using the same algorithm as the method
GuidCombGenerator.GenerateComb(). Remember that NHibernate is licensed under
the LGPL; therefore, all of its source code is publicly available for viewing and custom-
ization. (See http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License.)

Listing 9.2 VersionedEntity base class abstracting persistence-related code

B

C

D

http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

307Understanding persistence ignorance
IMPLEMENTING PERSISTENCE-ABSTRACTED ENTITIES

When inheriting from this VersionedEntity base class, all the basic persistence-
related features are neatly taken care of (identifier, the version, and the overloading
of System.Object methods). But we still have to map our business properties. For
that, we have a few choices: XML Mappings or attribute-based mappings. Another
option called Fluent NHibernate also looks promising, but because it’s a work in prog-
ress we won’t discuss it here.

 You may ask whether the use of NHibernate.Mapping.Attributes decreases the
persistence ignorance of your entities. After all, mapping attributes is about mapping,
which is a persistence concern rather than a domain concern. Do we want all those
attributes in our domain models? Like all things, it’s a trade-off. The pros and cons of
attributes are discussed in section 3.3.2.

 Let’s use a simple example to illustrate the documentation aspect of these
attributes:

[Class]
public class User : VersionedEntity {
 private string name;
 [Property(Length = 64, Access = "field.camelcase-underscore")]
 string Name { ... }
}

Without the information Length = 64, a careless developer may think that names can
be unlimited in length—and the user will find that the application truncates a name
for an unknown reason.

NOTE You can see that using VersionedEntity makes this implementation
free of code unrelated to the business domain, without sacrificing
functionality.

The fact that the domain model isn’t aware of other layers (like the presentation
layer) means that it can’t directly inform those layers about any events that occur (for
example, when a change occurs in the domain model, the GUI may need to be
refreshed). Fortunately, a pattern is available to solve this kind of problem.

9.3.2 Applying the Observer pattern to an entity

The Observer pattern lets an object pass information to other objects without know-
ing about them up front. The object that sends the notifications is called the subject,
and the objects that receive the notifications are the observers. This pattern is often
used in a WinForms MVC architecture, as explained in section 8.1.1.

 In .NET, you can implement this pattern using events. You add an event to your
class, and then the observers must register with the event in order to receive notifica-
tions. Most of the time, the registration is done just after the entity is created
or loaded.

 Let’s look at an example that illustrates how to implement this pattern. In the pre-
vious example, the class User has a property Name. If you want to inform the presenta-
tion layer when this property changes, this is the direct (and bad) way:

308 CHAPTER 9 Writing real-world domain models
public class User {
 public string Name {
 get { return name; }
 set {
 if (name==value) return;
 name = value;
 PresentationLayer.User_NameChanged(this);
 }
 }
}

Here, you assume that the entity has access to the presentation layer, which provides a
method to call when the entity changes. The problem, in this implementation, is that
the entity is tied to the presentation layer—and that’s bad because you can’t use the
entity in any other context (for example, when testing).

 Here’s the solution, using the Observer pattern:

public delegate void NameChangedEventHandler(
 object sender, EventArgs e);
public class User {
 private string name;
 public string Name {
 get { return name; }
 set {
 if (name==value) return;
 name = value;
 OnNameChanged();
 }
 }
 public event NameChangedEventHandler NameChanged;
 protected virtual void OnNameChanged() {
 if (NameChanged != null)
 NameChanged(this, EventArgs.Empty);
 }
}

You first define a delegate for the NameChanged event. Then, in the implementation of
the property (Name), you raise the event after changing the property’s value. The code
to raise the event is in the OnNameChanged() method. Using a separate method is a
recommended guideline from the official .NET documentation, which discusses the
implementation and use of events.

 The next step is to listen to the event:

User user = BusinessLayer.LoadUser(userId);
user.NameChanged += User_NameChanged;

In this code, you load a user and register the NameChanged event. The method
User_NameChanged() will be called whenever this property changes.

 Note that the .NET framework provides an INotifyPropertyChanged interface for
this scenario. Here’s an implementation of the User class inheriting from this interface:

using System.ComponentModel;
public class User : INotifyPropertyChanged {

309Implementing the business logic
 private string name;
 public string Name {
 get { return name; }
 set {
 if (name==value) return;
 name = value;
 OnPropertyChanged("Name");
 }
 }
 public event PropertyChangedEventHandler PropertyChanged;
 protected virtual void OnPropertyChanged(string propertyName) {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

This solution is similar to the previous one. But it has the benefit of working well with
other mechanisms in the .NET framework, such as data binding.

 You can also use the Observer pattern in many other situations. Here’s a security-
related example:

public class SecurityService {
 public void User_IsAdmnistratorChanging(object sender, EventArgs e) {
 if (! loggedUser.IsAdministrator)
 throw new SecurityException("Not allowed");
 }
}

The security service listens to the User.IsAdmnistratorChanging event. This service
is able to cancel a modification by throwing an exception if the logged user isn’t an
administrator.

 This section has explained how to avoid cluttering the domain model with unre-
lated concerns. Now, let’s talk about the domain model’s primary concern: the busi-
ness logic.

9.4 Implementing the business logic
In this book, we use the term business logic for any code that dictates how entities
should behave. It defines what can be done with the entities and enforces business
rules on the data they contain. Note that we aren’t strictly speaking about the domain
model, but about the business layer in general.

 The business layer can contain many kinds of business logic. We’ll use a case study
to cover them all. Let’s say you want to implement a subsystem of the CaveatEmptor
application that lets a user place a bid on an item; when this is done, all other bidders
are notified of the new bid via email.

 You can do that in the Bid or Item entity because sending emails isn’t their respon-
sibility. The business layer should do it. Here’s an example:

public void PlaceBid(int itemId, Bid bid) {
 using (ItemDAO persister = new ItemDAO()) {
 Item item = persister.LoadWithBids(itemId);

310 CHAPTER 9 Writing real-world domain models
 item.PlaceBid(bid);
 foreach (Bid bid in item.Bids)
 Notify(bid.Author, bid, ...);
 }
}

Before going further, we need to explain a few details. This method takes the identi-
fier of the item and a bid object. This might be convenient if you were calling the
method from an ASP.NET page where these item identifiers would be included in the
GET or POST request. In its implementation, PlaceBid loads the item using a DAO
called ItemDAO. (For more details about the DAO pattern, see section 10.1.)

 After loading the item, you place the bid and notify the authors of all the other
bids. Note that because the NHibernate session is still open, the Bids collection can be
lazily loaded. But in this scenario you know you’ll definitely be using the Bids collec-
tion, so you can save trips to the database by eagerly loading the collection using the
Load() method.

 Let’s dissect this method to see how various kinds of business logic are executed
when it’s called.

9.4.1 Business logic in the business layer

The method BusinessLayer.PlaceBid() should contain logic that belongs in the
business layer. For example, it’s common for the business layer to contain rules
related to security and validation:

BusinessLayer.PlaceBid(int itemId, Bid bid) {
 If (loggedUser.IsBanned)
 throw new SecurityException("Not allowed");
 // ...
}

Here, before placing the bid, you make sure the logged user isn’t banned.
 It’s also common to use the IInterceptor API when a business rule is hooked to

the persistence of entities. Read section 8.4 to see how it’s done. For complex business
rules, you may consider using a rules engine.

 The remaining business logic belongs in the domain model.

9.4.2 Business logic in the domain model

The business logic in an entity expresses what the entity is supposed to do from a core
domain point of view. Here is a simple implementation of the method Item.PlaceBid():

public void PlaceBid(Bid bid) {
 if (bid == null)
 throw new ArgumentNullException("bid");
 if (bid.Amount < CurrentMaxBid.Amount)
 throw new BusinessException("Bid too low.");
 if (this.EndDate < DateTime.Now)
 throw new BusinessException("Auction already ended.");
 Bids.Add(bid);
 CurrentMaxBid = bid;
}

311Implementing the business logic
This implementation illustrates the different kinds of business logic. You’ll see this
method again in chapter 10, where we discuss more architectural decisions.

 In this implementation, you start with some guard clauses, and then you perform
the action itself (assigning the bid to the item). The guard clauses are the if state-
ments before the action takes place. They prevent the user from doing something that
goes against the rules of the business. In this example, you use guard clauses to pre-
vent someone placing a lower bid than the current one or placing a bid on an item
that has already been sold.

 Sometimes, business logic must be executed at a specific time. For example, if
some validation logic must be performed before saving an entity, you can add a Vali-
date() method to the entity. Suppose you already have code such as this:

public string Name {
 get { return name; }
 set {
 if (string.IsNullOrEmpty(value))
 throw new BusinessException("Name required.");
 if (name==value) return;
 name = value;
 }
}

You can have an additional method that re-checks all the logic without duplicating
code:

public void Validate() {
 Name = Name;
 Password = Password;
 …
}

By setting the properties in the Validate() method, the business rules are re-
checked. Note that this trick only works if the validity checks are done in a specific
order. Specifically, things like

if (string.IsNullOrEmpty(value))

must come before

if (name==value) return;

Once your Validate() method has validated each individual property, you can
add validations that work on multiple properties. For example, in a holiday booking
application, you might check that an outbound flight date comes before an inbound
flight date.

 When you’re implementing the domain model’s business logic, you must be care-
ful to avoid unwanted dependencies. You can often move these up to an upper layer,
such as the business layer. This is better explained with an example:

public string Password {
 if (CryptographicService.IsNotAStrongPassword(value))
 throw new BusinessException("Not strong enough.");

312 CHAPTER 9 Writing real-world domain models
 password = value;
 MailingService.NotifyPasswordChange(this);
}

Here you can see the domain model doing too much; it shouldn’t depend on crypto-
graphic and mailing services. Instead, these concerns are better suited to the business
layer.

 There are also some rules that shouldn’t be implemented in the domain model, or
anywhere else in the application for that matter.

9.4.3 Rules that aren’t business rules

Some rules shouldn’t be implemented in any layer of the application. An easy way to
find them is to see if they really are business rules.

 These rules generally test the code, to make sure that everything went as expected.
Here’s an example:

public void PlaceBid(int itemId, Bid bid) {
 //...
 item.PlaceBid(bid);
 if (! item.Bids.Contains(bid))
 throw new Exception("PlaceBid() failed.");
 //...
}

Some would say that this is fine, because the code is testing whether the post-condi-
tions of the action are as expected. In this case, you’re testing that the item contains
the bid after PlaceBid is called. Post-condition checking is common with program-
mers who employ Design by Contract [Meyer, Bertrand]. We usually adopt a different
approach: we put post-conditional checks such as this into a separate test.

 Let’s take another example:

[Test]
public void LoadMinAndMaxBids() {
 //...
 min = BidDAO.LoadMinBid(item);
 max = BidDAO.LoadMaxBid(item);
 Assert.LessThan(min, max);

 //...
}

This is a unit test for the persistence layer. If the Assert fails, it means that there is a
bug in its implementation. We cover testing in more detail in section 8.1.

 So far, you’ve implemented the internal structure of the domain model, taking
care of its data and its behavior. Now it’s time to address some issues related to the
environment in which this domain model is used.

9.5 Data-binding entities
The presentation layer allows the end user to display and modify the entities of an
NHibernate application. This implies that the data inside your entities is displayed

313Data-binding entities
User

Name

Billing Details

Figure 9.2 Domain model bound
to a user interface

using .NET GUI controls and that the user’s input is sent back to the entities to per-
form updates to the data.

 Although this data transfer can be done manually, .NET provides a way to create a
link between an object (called the data source) and a control so that changes to one of
them are reverberated to the other. This is called data binding. In the context of NHi-
bernate, these objects are called POCOs rather than entities, to emphasize the fact that
they don’t have any special infrastructure to assist data binding. Developers who are
used to DataSets (and the wizards of Visual Studio .NET) many find POCO data bind-
ing challenging. DataSets contain special infrastructure to make data binding easier,
and POCOs are generally free of this additional infrastructure. Fortunately most .NET
GUI controls support basic data binding to POCOs, and .NET provides interfaces that
allow you to improve this support.

 In this section, we’ll discuss a number of alternatives for data binding; these alter-
natives apply equally to Windows and web applications. We’ll first explain how you can
interact with .NET GUI controls without using data binding. Then you’ll data bind
POCOs and learn about a number of extensions that improve these capabilities. You’ll
also see how NHibernate can help implement data binding. Finally, you’ll discover a
library that can help you data bind POCOs.

 A POCO includes three kinds of data: a simple property (that is a primitive type), a
reference to another POCO (as component or many-to-one relationship), and a col-
lection of POCOs (or primitives). In this discussion, we’ll ignore the reference to
another POCO because it’s generally visualized by displaying one of its properties (its
name, for example). An additional mechanism (such as a button) is provided to view
or edit the related entities.

 In order to cover how the simple properties and collections can be data bound,
we’ll use the example of writing a form to manage users and their billing details (as
defined for the auction application in section 3.1.2). This form, shown in figure 9.2,
will retrieve the user’s information and let you update the billing details.

 The interesting aspect of this example is that BillingDetails is an abstract class,
so the entities in the collection can be either BankAccount or CreditCard instances.
This complication will let us demonstrate the limitations of some approaches to data
binding, discussed next.

 Note that we don’t give a thorough explanation of the .NET APIs you’ll use; if you
need to learn more about them, refer to the official .NET documentation. You may
also want to read Data Binding with Windows Forms 2.0
[Noyes 2006].

 Let’s start by ignoring all these APIs and displaying/
retrieving data manually.

9.5.1 Implementing manual data binding

The idea behind this approach is simple: you copy the
POCO data from/to the GUI. When you need to display
something, you take it from the POCO and send it to
the GUI:

editName.Text = user.Name;

314 CHAPTER 9 Writing real-world domain models
When you need to process the POCOs, you retrieve any changes in the GUI and apply
them back in the POCOs:

user.Name = editName.Text;

This approach is simple to understand and implement. It’s also easy to customize. For
example, when displaying an identifier (of the type integer), you may decide to dis-
play New for a transient entity (instead of 0).

 It’s also straightforward to support polymorphism:

if(billingDetails is BankAccount) {
 //...
 editBankName.Text = (billingDetails as BankAccount).BankName;
}
else {
 //...
 editExpYear.Text = (billingDetails as CreditCard).ExpYear.ToString();
}

The downside of manual data binding is that it can be tedious to implement, espe-
cially for complex objects.

9.5.2 Using data-bound controls

In this case, you rely on the support of built-in data binding for public properties and
collections. Here’s an example for Name:

textBoxName.DataBindings.Add("Text", user, "Name");

In this example, the Windows Forms control textBoxName is data bound to the prop-
erty Name of the User instance. When binding collections, you can use the control’s
DataSource property:

dataGridView.DataSource = user.BillingDetails;

The DataGridView control uses the BillingDetails collection as data source. But
this solution is limited: for example, it doesn’t support polymorphism, which means
you can only edit the properties of the class BillingDetails. You can’t edit the prop-
erties of the subclasses BankAccount and CreditCard.

 You can use numerous helper classes and extensions to improve this sup-
port: ObjectDataSource, BindingSource; BindingList, IEditableObject, INotify-
PropertyChanged, and so on. We suggest that you look at these APIs to see which ones
suit your needs.

 If you value simplicity in your domain model and still want to do powerful data
binding, you can implement wrapping classes (using the Adapter pattern) that repre-
sent a presentation model:

BillingDetailsWrapper detailsWrapper = new BillingDetailsWrapper(details);
editBillingDetails.DataSource = detailsWrapper;

In this case, you have two classes with specific purposes that give you more control: the
entity keeps the focus on its business value, and the wrapper provides data-binding
capabilities on top of the entity. They also mean you have to do more work, because
you have two classes to implement instead of one.

315Data-binding entities
 Another benefit of using wrapper classes is that you can add properties for report-
ing purposes. A common example is to add a FullName property that returns the first
name and the last name of a User as a single string.

9.5.3 Data binding using NHibernate

If you think about the way NHibernate works, you’ll realize that it already does a kind
of data binding. But instead of binding an object to the GUI, it binds the object to the
database. When you load an entity, it fills the entity with data; and when you save the
entity, it pushes the data back to the database.

 The part of NHibernate responsible for this is the MetaData API. You can leverage
this API to help automate binding entities to a GUI. The following code is based on
that previously shown in section 3.4.10, where we discussed working with MetaData in
more depth:

User user = UserDAO.Load(userId);
NHibernate.Metadata.IClassMetadata meta =
 sessionFactory.GetClassMetadata(typeof(User));
string[] metaPropertyNames = meta.PropertyNames;
object[] propertyValues = meta.GetPropertyValues(user);
for (int i=0; i<metaPropertyNames.Length; i++) {
 Label label = new Label();
 label.Text = metaPropertyNames[i];
 Controls.Add(label);
 TextBox edit = new TextBox();
 edit.Text = propertyValues[i].ToString();
 Controls.Add(edit);
}

This simplistic implementation retrieves a user’s data and generates labels and text
boxes to display it. For brevity, we haven’t written code to set the position of these con-
trols on the form.

 The interface IClassMetadata also has the method: SetPropertyValues(object
entity, object[] values); it can be used to copy the data from the GUI to the entity.
Note that you must keep them in the same order as when you loaded them.

 Although this approach seems powerful, it has several drawbacks that aren’t
acceptable in production application. Even with a well-designed algorithm, the result-
ing layout of the GUI is far from perfect. You may have problems with the formatting
of the values (such as dates). There are better controls than TextBox for some types of
data (for example, DateTimePicker). Finally, this approach requires extra work to
support references to other POCOs and collections.

 It’s possible to solve these issues with some effort; and this approach can help when
you’re prototyping an application. Therefore, you should add it to your toolbox.

9.5.4 Data binding using ObjectViews

ObjectViews is an open source library written specifically to help data bind POCOs to
.NET Windows controls. It’s largely outside the scope of this book to explore this
library, but it’s worth mentioning that it supports data binding of both individual
POCOs and collections.

316 CHAPTER 9 Writing real-world domain models
 At the time of writing, ObjectViews is based on .NET 1.1 and won’t evolve further.
You can download this library (with a helpful example application) from http://
sourceforge.net/projects/objectviews/.

9.6 Filling a DataSet with entities’ data
DataSets are widely used, mostly by data-centric applications leveraging wizards in
tools like Visual Studio .NET to generate code. But they’re different than POCOs. If,
for some reason, your domain model must communicate with a component using
DataSets, you’ll have to find a solution to this problem.

 Before you begin, remember that you can execute classic ADO.NET code by either
opening a database connection yourself, or by using the one NHibernate has. NHiber-
nate’s connection can be accessed using the ISession.Connection property. In this
case, you’ll have to be careful not to work with stale data or change something without
clearing the related NHibernate second-level cache. You may also consider rewriting
the component using DataSets for better consistency. If neither of these options is
applicable, you’ll have to convert your entities from/to DataSets.

 In the following sections, we’ll consider going from entities to a DataSet filled with
their data. You shouldn’t have any problem reversing this process.

9.6.1 Converting an entity to a DataSet

A DataSet is an in-memory data container that mimics the structure of a relational
database. Filling it means adding rows to its tables. It’s relatively easy to figure out the
code required to fill a DataSet. Here, we assume you’re working with a typed DataSet,
because they’re easier to work with.

 Listing 9.3 contains a method that does this work for the Item entity. It’s complete
because it handles the simple properties, the Seller reference to the User entity, and
the Bids collection.

static private ArrayList adding = new ArrayList();
static public void FillDataSet(TypedDataset dataset, Item item) {
 if (adding.Contains(item))
 return;
 adding.Add(item);
 TypedDataset.ItemRow row;
 if (dataset.Item.Rows.Contains(item.ItemID))
 row = dataset.Item.FindByItemID(item.ItemID);
 else
 row = dataset.Item.NewItemRow();
 row.ItemID = item.ItemID;
 row.Name = item.Name;
 //...
 if (item.Seller == null)
 row.SetSellerIDNull();
 else {
 if (! dataset.User.Rows.Contains(item.Seller.UserID))

Listing 9.3 Filling a DataSet with the content of an entity

B

C

D

E

http://sourceforge.net/projects/objectviews/
http://sourceforge.net/projects/objectviews/

317Summary
 FillDataSet(dataset, item.Seller);
 row.SellerID = item.Seller.UserID;
 }
 if (NHibernateUtil.IsInitialized(item.Bids))
 foreach (Bid bid in item.Bids)
 FillDataSet(dataset, bid);
 if (! dataset.Item.Rows.Contains(item.ItemID))
 dataset.Item.AddItemRow(row);
 adding.Remove(item);
}

You use a collection to keep the list of entities that are currently being added B. This
is required to avoid infinite recursive calls when there is a circular reference. If the entity
is already in the DataSet, it must be updated; otherwise, its row must be created C.

 Filling the simple properties is straightforward D. Handling references to other
entities is more complex: you must either remove the entity or add it if it isn’t in the
DataSet yet E.

 Handling collections requires that you first make sure the collection is already
loaded (unless, in this case, you want it to be lazy loaded). Then you add the bids one
by one F. You add the row to the DataSet if it doesn’t already contain the entity G.
Finally, you remove the entity from this collection H because we’ve processed it.

 If you’re using a code generator as explained earlier in this chapter, you may be
able to generate this code for all your entities. Doing so will save you a lot of time.

 Now let’s see how NHibernate can help you achieve the same result more quickly.

9.6.2 Using NHibernate to assist with conversion

If you’re working with a non-typed DataSet, you can use an approach similar to the
one explained in section 9.5.3: you can extract the class names and the property
names and use them as table names and column names.

 NHibernate approximates this idea with the ToString(object entity) method of
the NHibernate.Impl.Printer class. Look at it before starting your implementation.

 Succeeding in implementing this approach means it’s generic enough to work
with any entity, because you’ll only be manipulating metadata. But it also means the
domain model dictates the schema of the DataSet. You can solve this issue by using the
mapping between the domain model and the database (because the DataSet schema
is generally based on the domain model).

 With this ability to communicate with a component using DataSets, you’re finished
implementing a real-world domain model.

9.7 Summary
Writing real-world domain models can be tricky because of the influence of the envi-
ronment. We hope this chapter has helped you understand the process.

 The first step is to implement the domain model and the database and write the
mapping between them. Until this chapter, you wrote them manually; now, you know
how to generate them. You even know how to automate the migration of the database
as the domain model evolves.

E

F
G

H

318 CHAPTER 9 Writing real-world domain models
 This chapter explained how to handle legacy databases when you’re writing the
mapping. NHibernate supports the mapping of natural and composite keys. As a last
resort, you can implement user types to handle custom situations. It’s also possible to
work with a database using triggers.

 After explaining how to implement and map the domain model’s data, we moved
to its business logic. We explained what persistence ignorance means and how to write
a clean domain model that’s free of unwanted dependencies. Then, we explained how
the different kinds of business logic should be implemented. We also gave you some
advice about errors to avoid.

 When you’ve completed the domain model, you need to display it. This is where data
binding comes into play. As you saw, doing it correctly can require quite a bit of work.

 We completed this chapter by looking at how you can obtain a DataSet from an
entity’s content. Although this process may require a lot of time at first, it can be
automated.

 This chapter was just an introduction to the real world of domain models. You may
need to do some research to find the perfect answer for your needs, and we hope the
resources we’ve mentioned will keep you busy for a while.

 Now, it’s time to move to the persistence layer. So far, you’ve been writing simple,
short persistence operations that act on similar entities. Let’s step back and look at
the architectural issues that accompany writing a functional persistence layer in the
real world.

Architectural
 patterns for persistence
And so, you’ve finally arrived at the last chapter. We’ve touched on many topics
along the way, and you should now feel comfortable about using NHibernate to
implement persistence in your applications. You should also be roughly familiar
with the breadth of features available in NHibernate and understand the flexibility
they give you. We’ve also discussed layered architecture, which will help you build
maintainable applications where concerns are neatly separated.

 With all this knowledge, you should be able to create the domain model, map it
to the database, and implement the business layer and the presentation layer.
We’ve discussed domain models, but so far we haven’t addressed the persistence
layer in much depth. In chapter 2, you may recall using simple function calls to
load, save, and update your entities. These types of examples are great for quickly

This chapter covers
■ Designing the persistence layer
■ Implementing reusable Data Access Objects
■ Implementing conversations
■ Supporting Enterprise Services transactions
319

320 CHAPTER 10 Architectural patterns for persistence
explaining concepts; but in a real-world application, you’ll benefit from something
more structured and coordinated.

 This chapter starts with the presentation of the Data Access Object (DAO) pattern.
It’s a popular pattern that deals with the organization of the persistence layer. We’ll
take this pattern and demonstrate how you can build a neat, structured persistence
layer that is both generalized and reusable.

 You’ll also learn the basics of session management, which is an important (and some-
what challenging) aspect of working with NHibernate. Following that, we’ll return to the
interesting topic of conversations (introduced in chapter 5) and show practical exam-
ples of the various ways you can implement conversations with NHibernate.

 In the real world, you may be using NHibernate as part of a larger system. This
chapter will end with a discussion of distributed applications. It will explain how to
make an NHibernate application participate to a distributed transaction.

10.1 Designing the persistence layer
NHibernate is intended to be used in just about any architectural scenario imaginable,
as long as the application is based on .NET (or Mono). It may run in an ASP.NET appli-
cation, WPF, WCF, a Windows Forms, or a Console application. It may even be used
inside a web service or Windows service.

 These environments are similar as far as NHibernate is concerned; only a few
changes are required to port an NHibernate application from one environment to
another, as long as the application is correctly layered.

 We don’t expect your application design to exactly match the scenario we show here,
and we don’t expect you to integrate NHibernate using exactly the code that we use.
Rather, we’ll demonstrate some common patterns and let you adapt them to your own
needs and goals. For this reason, our examples are written in plain C#, using no third-
party frameworks.

 We emphasized the importance of disciplined application layering in chapter 1.
Layering helps you achieve separation of concerns, making code more readable and
maintainable by grouping functionality that does similar things. On the other hand,
layering carries a price: each extra layer increases the amount of code it takes to
implement a simple piece of functionality—and more code makes the functionality
more difficult to change.

 We won’t try to form any conclusions about the right number of layers to use (and
certainly not about what those layers should be) because the “best” design varies from
application to application, and a complete discussion of application architecture is
well outside the scope of this book. We merely observe that, in our opinion, a layer
should exist only if it’s required, because layers increase the complexity and cost of
development. But we agree that a dedicated persistence layer is a sensible choice for
most applications and that persistence-related code shouldn’t be mixed with business
logic or presentation.

 In this section, we’ll show you how to separate NHibernate-related code from your
business and presentation layers. The example is based on a console application, but
it will be easy to reuse this persistence layer in another (web or Windows) application.

321Designing the persistence layer
 We’ll use the simple “place bid” use case from the CaveatEmptor application to
demonstrate our ideas. This use case states that when a user places a bid on an item,
CaveatEmptor must perform the following tasks, all in a single request:

1 Check that when the user enters the bid, the amount is greater than any other
bids for the item (you can’t bid lower than someone else!).

2 Check that the auction hasn’t yet ended.
3 Create a new bid for the item.

If either of the first two checks fails, the user should be informed of the reason for the
failure; if both checks are successful, the user should be informed that the new bid has
been made. These checks are the business rules. We also have a nonfunctional require-
ment: if a failure occurs while accessing the database, the user should be informed
that the system is currently unavailable (this is an infrastructure concern).

 Let’s see how you can implement this functionality, starting with an overly simple
approach.

10.1.1 Implementing a simple persistence layer

In the “Hello World” application of chapter 2, the example program contained simple
functions for everything related to persistence. This design doesn’t scale well, and
using it in larger applications would result in a sprawling, disorganized mess of func-
tions for creating, reading, updating, and deleting entities.

 In this section, we’ll suggest a tidier approach, where you split the persistence layer
into a number of classes, each responsible for a specific concern. The first thing we
want to tackle is finding a way for the application to obtain new ISession instances.
For this, you’ll write a simple helper (or utility) class to handle configuration and ini-
tialization of the ISessionFactory (see chapter 3) and also to provide easy access to
new ISessions. The full code for this class is shown in listing 10.1.

public class NHibernateHelper {
 public static readonly ISessionFactory SessionFactory;
 static NHibernateHelper() {
 try {
 Configuration cfg = new Configuration();
 SessionFactory = cfg.Configure().BuildSessionFactory();
 } catch (Exception ex) {
 Console.Error.WriteLine(ex);
 throw new Exception("NHibernate initialization failed", ex);
 }
 }
 public static ISession OpenSession() {
 return SessionFactory.OpenSession();
 }
}

The ISessionFactory is bound to a static (and readonly) variable B. All your
threads can share this one constant, because the ISessionFactory implementation is

Listing 10.1 A simple NHibernate helper class

B
C

D

E

F

322 CHAPTER 10 Architectural patterns for persistence
thread-safe. This session factory is created in a static constructor C, and this construc-
tor is executed the first time this helper class is accessed.

 The ISessionFactory is built from a Configuration D; this is the same process
we’ve demonstrated throughout the book. You catch and log exceptions E, but of
course you should use your own logging mechanism rather than Console.Error. The
utility class has one public method: a factory method for new ISessions F. It’s a con-
venient method to shorten the code required for the most common usage of this
class: opening new sessions.

 This (trivial) implementation stores the ISessionFactory in a static variable. Note
that this design is completely cluster-safe. The ISessionFactory implementation is
essentially stateless (it keeps no state relative to running transactions), except for the
second-level cache. It’s the responsibility of the cache provider to maintain cache con-
sistency across a cluster. Thus you can safely have as many ISessionFactory instances
as you like. Despite this freedom, in practice you want as few as possible, because the
ISessionFactory consumes significant resources and is expensive to initialize.

 Now that we’ve solved the problem of where to put the ISessionFactory instance
(a common question that arises with NHibernate newcomers), we’ll continue with the
use-case implementation.
PERFORMING ALL THE OPERATIONS INSIDE THE SAME METHOD

In this section, you’ll write the code that implements the “place bid” use case in a sin-
gle PlaceBidForItem() method, shown in listing 10.2. This code can live in an
ASP.NET code-behind or a function in a console application. It doesn’t matter; let’s
assume that wherever it is, the containing program will get some user input and pass it
to this method.

 It’s worth noting that this code sample isn’t considered a good implementation,
but we’ll get to that shortly. It does give us a nice starting point for demonstrating the
varying degrees of separation you can introduce into your applications.

public void PlaceBidForItem(long itemId, long userId, double bidAmount) {
 try {
 using(ISession session = NHibernateHelper.OpenSession())
 using(session.BeginTransaction()) {
 Item item = session.Load<Item>(itemId, LockMode.Upgrade);

 if (item.EndDate < DateTime.Now) {
 throw new BusinessException("Auction already ended.");
 IQuery q =
 session.CreateQuery(@"select max(b.Amount)
 from Bid b where b.Item = :item");
 q.SetEntity("item", item);
 double maxBidAmount = (double) q.UniqueResult();
 if (maxBidAmount > bidAmount) {
 throw new BusinessException("Bid too low.");
 User bidder = session.Load<User>(userId);
 Bid newBid = new Bid(bidAmount, item, bidder);
 item.AddBid(newBid);

Listing 10.2 Implementing a simple use case in one method

B

C

D
E

F

323Designing the persistence layer
 session.Transaction.Commit();
 }
 } catch (HibernateException ex) {
 throw new InfrastructureException(
 "Error while accessing the database", ex);
 }
}

You first get a new ISession using your utility class B. You then start a database trans-
action. The session and transaction will be closed automatically due to the using()
statement. If you don’t commit the transaction, or if this commit fails for some reason,
the transaction will be automatically rolled back.

 You load the Item from the database using its identifier value C and also ask for a
pessimistic lock so the database won’t allow another transaction to modify the record
while you’re working on it. This prevents two simultaneous bids for the same item.

 If the end date of the auction is earlier than the current date D, you throw an
exception so that the persistence layer displays an error message. Usually, you’ll want
more sophisticated error handling for this exception, with a qualified error message.

 Using an HQL query E, you check whether the database contains a higher bid for
the current item. If a higher bid exists, you display an error message. Otherwise, if all
checks are successful, you place the new bid by adding it to the item F. Note that you
don’t have to save it manually by calling Save(); it’s saved using NHibernate’s transi-
tive persistence (cascading from the Item to Bid).

 Committing the database transaction G flushes the current state of the ISession to
the database. A try-catch block H is responsible for exceptions thrown when rolling
back the transaction or closing the session; it’s wrapped to abstract NHibernate details.

 As we mentioned, this implementation of the PlaceBidForItem() method isn’t
necessarily a good one; it does too much of the hard work itself and takes on the
responsibilities of implementing domain logic, enforcing business rules, and carrying
out persistence functionality. Essentially, it does the work of a persistence layer, busi-
ness layer, and domain model combined.

 Let’s now see if you can improve things by pushing some of that hard work into the
domain model.
CREATING A “SMART” DOMAIN MODEL

The current PlaceBidForItem() method contains code that implements business
logic. Let’s move that code to its right place: the Item entity.

 To do this, give your Item entity a PlaceBid()method :

public Bid PlaceBid(User bidder, double bidAmount, double maxBidAmount) {
 if (this.EndDate < DateTime.Now)
 throw new BusinessException("Auction already ended.");
 if (maxBidAmount > bidAmount) {
 throw new BusinessException("Bid too low.");

 Bid newBid = new Bid(bidAmount, this, bidder);

 this.AddBid(newBid);
 return newBid;
}

G

H

324 CHAPTER 10 Architectural patterns for persistence
This code enforces business rules that constrain the state of your business objects, but
it doesn’t hold any data-access functionality. The motivation here is to encapsulate
business logic in the classes of the domain model without worrying about loading and
saving data. Hence, you have a separation of concerns.

 You may be surprised to see that this new PlaceBid() method has a maxBidAmount
parameter—surely the Item entity can find this information for itself. This is a matter
of taste, and we’d rather pass this data in from the upper layer than ask the domain
object to run queries that may require accessing the persistence layer.

 Now that your domain model has taken some responsibility for itself, you can sim-
plify the original PlaceBidForItem() method as follows:

public void PlaceBidForItem(long itemId, long userId, double bidAmount) {
 try {
 using(ISession session = NHibernateHelper.OpenSession())
 using(session.BeginTransaction()) {

 Item item = session.Load<Item>(itemId, LockMode.Upgrade);

 IQuery q =
 session.CreateQuery(@"select max(b.Amount)
 from Bid b where b.Item = :item");
 q.SetEntity("item", item);
 double maxBidAmount = (double) q.UniqueResult();

 User bidder = session.Load<User>(userId);
 item.PlaceBid(bidder, bidAmount, maxBidAmount);
 session.Transaction.Commit();
 }
 } catch (HibernateException ex) {
 throw new InfrastructureException(
 "Error while accessing the database", ex);
 }
}

Obviously, you were able to reduce this method because some of the work is now dele-
gated to the domain model (item.PlaceBid). But this code still contains functionality
that is relevant to both the persistence layer and the business layer; it’s dealing with
both saving and loading entities, and deciding how to construct queries to coordinate
the placing of a bid.

 To take things a step further, let’s attempt to clearly separate these responsibilities.
Remember, as your programs get bigger, combining lots of responsibilities into a sin-
gle class can lead to software that is difficult to maintain and evolve. Separating
responsibilities will make life much easier for you.

 Many patterns are available to help you address this separation of concerns. Let’s
examine one of the most popular.
INTRODUCING THE DATA ACCESS OBJECT PATTERN

Mixing data access code (the responsibility of the persistence layer) with control logic
(part of the business layer) violates our emphasis on separation of concerns. For all
but the simplest applications, it makes sense to hide NHibernate API calls behind a
façade with higher-level business semantics. There is more than one way to design

Loads (and locks) item

Retrieves
maximum bid
amount for item

Retrieves bidder
and places bid

325Designing the persistence layer
this façade—some small applications may use a single class for all persistence opera-
tions; some may use a class for each operation—but we prefer the Data Access Object
(DAO) pattern.

 A DAO defines an interface to persistence operations (CRUD and finder methods)
relating to a particular persistent entity. It advises you to group code that relates to
persistence of that entity. Another common name for this pattern is Gateway
(although they have slightly different meanings). If you’ve read Domain-Driven Design
[Evans 2004], you may realize that the DAO pattern is similar to the Repository pattern
described there. DAO tends to be slightly more fine-grained, having one DAO class per
entity. We like both these patterns, but for this example it’s simpler to explain DAO
rather than the ins and outs of domain-driven development (DDD).

 To begin our explanation of the DAO pattern, let’s create an ItemDAO class, which
will eventually implement all persistence code related to Items. For now, it contains
only the FindById() method, along with GetMaxBidAmount() and a method to save
items. The full code of the DAO implementation is shown in listing 10.3.

public class ItemDAO {
 public static Item FindById(long id) {
 using (ISession session = NHibernateHelper.OpenSession())
 return session.Load<Item>(id);
 }
 public static double GetMaxBidAmount(long itemId) {
 string query = @"select max(b.Amount)
 from Bid b where b.Item = :item";
 using (ISession session = NHibernateHelper.OpenSession()) {
 IQuery q = session.CreateQuery(query);
 q.SetInt64("itemId", itemId);
 return (double) q.UniqueResult();
 }
 }
 public static Item MakePersistent(Item entity) {
 using (ISession session = NHibernateHelper.OpenSession())
 session.SaveOrUpdate(entity);
 return entity;
 }
}

This class provides two static methods to perform the operations needed by your
PlaceBid() method. The FindById() method B loads items. Note that pessimistic
locking isn’t an option here because you’re opening and closing sessions in several
places, and you may want the lock to span all these operations (something we haven’t
allowed for here, but we’ll get to that). To retrieve the highest bid amount, you can
use the GetMaxBidAmount() method C. The MakePersistent() method D can be
used to save items.

 Whether GetMaxBidAmount() belongs on an ItemDAO or a BidDAO is a matter of
taste; but because the argument is an Item identifier, it seems to naturally belong

Listing 10.3 DAO abstracting item-related persistence operations

B

C

D

326 CHAPTER 10 Architectural patterns for persistence
here. When you’re designing any class interfaces, we encourage you not to be trou-
bled by such decisions because modern refactoring tools make it easy to move respon-
sibilities around if you change your mind.

 Your UserDAO also needs a FindUserById() method. You should be able to figure
out how to implement it (replace Item with User in listing 10.3).

 As a result of all this separation, you reap the rewards of a much cleaner PlaceBid-
ForItem() method:

public void PlaceBidForItem(long itemId, long userId, double bidAmount) {
 try {
 Item item = ItemDAO.FindById(itemId);
 double maxBidAmount = ItemDAO.GetMaxBidAmount(itemId);
 User bidder = UserDAO.FindById(userId);
 item.PlaceBid(bidder, bidAmount, maxBidAmount);
 ItemDAO.MakePersistent(item);
 }
 } catch (HibernateException ex) {
 throw new InfrastructureException(
 "Error while accessing the database", ex);
 }
}

Notice how much more self-documenting this code is than the first implementation.
Someone who knows nothing about NHibernate can understand immediately what
this method does, without the need for code comments. You’ve also achieved a clear
separation of concerns.

 You may be satisfied with this improved implementation, but let’s look at some of
its drawbacks. First, it makes transparent persistence impossible. This is why you need
to explicitly save the item at the end. The implementation also opens four sessions
where a single would be enough. Finally, the implementation of several similar DAOs
violates the Don’t Repeat Yourself (DRY) principle, giving you redundancy for the
basic CRUD operations.

 These problems can all be solved by abstracting the common basic operations and
by figuring out a way to make these DAOs share the same session.

 Let’s jump to the right solution.

10.1.2 Implementing a generic persistence layer

You learned in the previous section that although it’s easy to implement a simple DAO,
a number of key issues require a smarter solution. An ideal solution would allow all
DAOs to share the same session and would minimize the amount of code repetition.

 Let’s examine a great solution to the first issue of shared sessions, using a feature
introduced in NHibernate 1.2.
USING ISESSIONFACTORY.GETCURRENTSESSION()

The idea behind this feature is that, for a specific action, you generally need a single
session. Because this session can be reused for all the operations (even if they’re unre-
lated), it’s logical to make this session available to the entire application (that is, to its
persistence layer).

327Designing the persistence layer
 Your first impulse may be to create a static session like the session factory defined in
listing 10.1. But this won’t work for ASP.NET applications because each HTTP context
should have its own NHibernate session (using a static session results in a single session
for the whole web application, which is bad because sessions aren’t thread safe).

 It’s also possible to open a session and send it to each DAO. In this case, the DAOs
would no longer have static methods. You’d instantiate these DAOs and provide the
session as a parameter in their constructors. This solution could work, but it’s tedious
having to pass the NHibernate session everywhere it may be needed.

 Instead of solving this problem yourself, you can leverage the ISessionFactory.
GetCurrentSession() method. This method returns the session instance associated
with the current persistence context, similar to the ASP.NET notion of an HTTP
request context. Any components called in the same context share the same session.

 When you use this feature, the specific context of your application is abstracted.
Your persistence layer works whether the context is defined by a web or Windows
context.

 The first step to enable this feature is to set the context. You do so using the config-
uration property current_session_context_class:

<property name="current_session_context_class">
 web
</property>

This example sets the context to web, which is the short name of an implementation
included in NHibernate that uses HttpContext to track the current session. It’s there-
fore appropriate for ASP.NET applications.

 NHibernate 1.2.1 comes with a number of built-in current session context imple-
mentations, listed in table 10.1.

 It’s obviously possible to implement your own contexts. You have to write a class
implementing the extension interface NHibernate.Context.ICurrentSessionCon-
text and set it in the mentioned property. For more details, see this extension’s docu-
mentation and the available implementations in the namespace NHibernate.Context.

Table 10.1 NHibernate’s built-in current session-context implementations

Short name Description

Managed_web This context was the only one available in NHibernate 1.2.0. It’s now deprecated:
use web instead.

Call This context uses the CallContext API to store the current session. Note that
although it works in any kind of application, it isn’t recommended for ASP.NET 2.0
applications.

thread_static When using this context, sessions are stored in a static field marked with
[ThreadStaticAttribute]. Each thread has its own session.

Web This context uses the HttpContext API to store the current session. It’s
recommended for web applications (and only works with them).

328 CHAPTER 10 Architectural patterns for persistence
Depending on the implementation of the context, you may have additional work
to do. For example, these contexts don’t take care of opening and closing the
session. You have to do it yourself and bind the session to the context (using the
class CurrentSessionContext).

 Let’s see how to use this feature. First, add the following method to the class NHi-
bernateHelper:

public static ISession GetCurrentSession() {
 return SessionFactory.GetCurrentSession();
}

Here’s what the ItemDAO class looks like now:

public class ItemDAO {
 public static Item FindById(long id) {
 return NHibernateHelper.GetCurrentSession().Load<Item>(id);
 }
 public static double GetMaxBidAmount(long itemId) {
 string query = @"select max(b.Amount)
 from Bid b where b.Item = :item";
 IQuery q = NHibernateHelper.GetCurrentSession().CreateQuery(query);
 q.SetInt64("itemId", itemId);
 return (double) q.UniqueResult();
 }
 public static Item MakePersistent(Item entity) {
 NHibernateHelper.GetCurrentSession().SaveOrUpdate(entity);
 return entity;
 }
}

The DAO is no longer responsible for opening the NHibernate session. This is done at
an upper level. In the example, it can be done in the PlaceBidForItem() method; see
listing 10.4.

using NHibernate.Context;
public void PlaceBidForItem(long itemId, long userId, double bidAmount) {
 try {
 using(ISession session = NHibernateHelper.OpenSession())
 using(session.BeginTransaction()) {
 CurrentSessionContext.Bind(session);
 Item item = ItemDAO.FindByIdAndLock(itemId);
 double maxBidAmount = ItemDAO.GetMaxBidAmount(itemId);
 User bidder = UserDAO.FindById(userId);
 item.PlaceBid(bidder, bidAmount, maxBidAmount);
 session.Transaction.Commit();
 }
 } catch (HibernateException ex) {
 throw new InfrastructureException(
 "Error while accessing the database", ex);
 }
 finally {
 CurrentSessionContext.Unbind(NHibernateHelper.SessionFactory);
 }
}

Listing 10.4 Session management using the current session API

B
C

D

329Designing the persistence layer
Once the session is opened, you attach it to the current context so it’s available to any
object executed in this context B. After that, you can execute the logic as before C.
Note that a pessimistic lock can now be used. At the end of the operation, you must
detach the (closed) session from the current context D.

 With this implementation, DAOs can access the same session in a neat and trans-
parent way. It’s time to address the other issue in the implementation of a persistence
layer: minimizing redundancy.
DESIGNING DAOS USING GENERICS

Whenever you find yourself repeating a similar code repeatedly, it’s time to think com-
position, inheritance, and generics. Note that this section assumes you have a good under-
standing of .NET 2.0 generics. If you’re still using .NET 1.1, it’s possible to adapt the
following idea, but the result won’t be as clean.

 As you saw when implementing the method FindById() for the ItemDAO and
UserDAO classes, only the name of the entity changes for basic CRUD operations.
Therefore, it’s possible to use generics to abstract this operation.

 The new DAOs may look like this:

public abstract class GenericNHibernateDAO<T, ID> {
 public T FindById(ID id) {
 try {
 return NHibernateHelper.GetCurrentSession().Load<T>(id);
 }
 catch(HibernateException ex) {
 throw new Exceptions.InfrastructureException(ex);
 }
 }
 //...
}
public class UserDAO : GenericNHibernateDAO<User, long> {
}

The GenericNHibernateDAO class only needs the types of the entity T and its identifier
ID to implement the FindById() method. After that, implementing the UserDAO class
means inheriting from GenericNHibernateDAO and providing these types.

 Many other methods can be implemented like that. Before you fill the Generic-
NHibernateDAO class with them, let’s take a step back and think about the final design.

 As far as the business layer is concerned, the persistence layer should provide a set
of interfaces to perform all the operations that are needed. This means the under-
lying implementation doesn’t matter and can be changed as long as the interfaces
don’t change.

 In your design, you’ll have a GenericDAO interface with operations common to all
entities and DAO interfaces, inheriting from the GenericDAO interface for each entity.
These interfaces will all have implementations using NHibernate. Figure 10.1 illus-
trates this design.

 Our experience tells us that even though some interfaces may not have any meth-
ods, it’s still important to create them because they’re likely candidates for future
extension.

330 CHAPTER 10 Architectural patterns for persistence
You’ll use the Abstract Factory pattern as a façade to provide the implementations of
the interfaces. This means the NHibernate classes will be completely hidden from the
other layers. It will even be possible to switch the persistence mechanism at runtime.

 Enough theory. Let’s look at the GenericDAO interface:

public interface GenericDAO<T, ID> {
 T FindById(ID id);
 T FindByIdAndLock(ID id);
 IList<T> FindAll();
 T MakePersistent(T entity);
 void MakeTransient(T entity);
}

This interface defines methods to load (the Find...() methods), save (using Make-
Persistent()), and delete (using MakeTransient()) entities.

The interfaces inheriting from the GenericDAO interface look like this:

public interface ItemDAO : GenericDAO<Item, long> {
 Bid GetMaxBid(long itemId);
 Bid GetMinBid(long itemId);
}

Here, you avoid defining a too-specific method like GetMaxBidAmount(). Now, let’s
implement these interfaces. First, GenericNHibernateDAO:

ItemDAO<Item,long>
Bid GetMaxBid(long itemId)
Bid GetMinBid(long itemId)

UserDAO<User,long>

GenericDAO<T,ID>
FindById(ID id) : T
FindByIdAndLock(ID id) : T
FindAll() : IList<T>
MakePersistent(T entity) : T
MakeTransient(T entity)

GenericNHibernateDAO<T,ID>

ItemDAOImpl

UserDAOImpl

Figure 10.1 Generic DAO
interfaces with a separated
NHibernate implementation

Why MakePersistent() and MakeTransient() instead of Save() and Delete()?
It’s simpler to explain persistence operations using verbs like save and delete. But
NHibernate is a state-oriented framework. This notion was introduced in section 5.1.

For example, when you delete an entity, that entity becomes transient. Its row in the
database is eventually deleted, but the entity doesn’t cease to exist (and it can even
be persisted again). Because these methods are created for the business layer, their
names should reflect what happens at that level.

331Designing the persistence layer
public abstract class GenericNHibernateDAO<T, ID>: GenericDAO<T, ID> {
 private ISession session;
 public ISession Session {
 get {
 if (session == null)
 session = NHibernateHelper.GetCurrentSession();
 return session;
 }
 set {
 session = value;
 }
 }
 public T FindById(ID id) {
 return Session.Load<T>(id);
 }
 public T FindByIdAndLock(ID id) {
 return Session.Load<T>(id, LockMode.Upgrade);
 }
 public IList<T> FindAll() {
 return Session.CreateCriteria(typeof(T)).List<T>();
 }
 public T MakePersistent(T entity) {
 Session.SaveOrUpdate(entity);
 return entity;
 }
 public void MakeTransient(T entity) {
 Session.Delete(entity);
 }
}

In this implementation, you add the Session property so the DAOs can work without
needing a session bound to the current context. But in this case, you must manually pro-
vide this session. You can write another class in the persistence layer to take care of that.

 The implementation of the other classes is straightforward. Here’s the implemen-
tation of the ItemDAO interface:

public class ItemDAOImpl : GenericNHibernateDAO<Model.Item, long>,
 ItemDAO {
 public virtual Model.Bid GetMinBid(long itemId) {
 IQuery q = Session.GetNamedQuery("MinBid");
 q.SetInt64("itemId", itemId);
 return q.UniqueResult<Model.Bid>();
 }
 public virtual Model.Bid GetMaxBid(long itemId) {
 IQuery q = Session.GetNamedQuery("MaxBid");
 q.SetInt64("itemId", itemId);
 return q.UniqueResult<Model.Bid>();
 }
}

Although it has nothing to do with this design, we decided to follow another good
practice and use named queries. Note that you should wrap all these methods in a
try/catch statement in case an exception is thrown:

332 CHAPTER 10 Architectural patterns for persistence
try {
 //...
}
catch (HibernateException ex) {
 throw new Exceptions.InfrastructureException(ex);
}

Using this new persistence layer isn’t much different than what is done in listing 10.4.
The main difference is that these DAOs must be instantiated. You add another inter-
face to take care of that concern without introducing a dependency to the NHiber-
nate implementation:

public abstract class DAOFactory {
 public abstract UserDAO GetUserDAO();
 public abstract ItemDAO GetItemDAO();
}

Its implementation is as follows:

public class NHibernateDAOFactory : DAOFactory {
 public override UserDAO GetUserDAO() {
 return new UserDAOImpl();
 }
 public override ItemDAO GetItemDAO() {
 return new ItemDAOImpl();
 }
}

The last step is to instantiate this class at the initialization of the application:

DAOFactory daoFactory = new NHibernateDAOFactory();

Everything is ready for the new PlaceBidForItem() method. Here’s the interesting
part of that method:

ItemDAO itemDAO = daoFactory.GetItemDAO();
Item item = itemDAO.FindByIdAndLock(itemId);
double maxBidAmount = itemDAO.GetMaxBid(itemId).Amount;
User bidder = daoFactory.GetUserDAO().FindById(userId);
item.PlaceBid(bidder, bidAmount, maxBidAmount);

The rest of the method remains as in listing 10.4. Interestingly, this code represents
exactly what you want the PlaceBidForItem() method to look like (the rest is
plumbing).

 You need to clean up one other issue: the PlaceBidForItem() method still takes
care of creating sessions and dealing with NHibernate. If you agree that managing the
NHibernate session is a persistence-layer concern, it shouldn’t appear in this business-
layer method. You’ll do one last refactoring to take care of this issue by using session
management. We’ll start by explaining session management for ASP.NET applications,
because this is likely to be the most common scenario.
SESSION MANAGEMENT FOR WEB APPLICATIONS

When you process a complex request, many classes and methods of the business layer
may be involved. The latest implementation of the PlaceBidForItem() method is

333Designing the persistence layer
currently responsible for opening and closing a session; but what if the program
needs to call a similar method called UpdateItemPopularity() after calling the
PlaceBidForItem() method? Following the current strategy, you’d have to open
another session in that function, too.

 Aside from the obvious performance issue, this means the business logic must
involve one database transaction for each method that opens and closes a session. In
turn, this implies that if UpdateItemPopularity() fails, it won’t be possible to fall
back to the previous call to PlaceBidForItem(), so you risk leaving your database in
an inconsistent state.

 Another issue is that after executing the business logic in each of these functions,
the entities they manipulate become detached from their session as it’s closed. Lazy
loading is subsequently disabled, thus preventing other layers (like the presentation
layer) from transparently lazy loading collections of these entities.

Thankfully, you can easily solve these problems by using a single session that is used
for all the high-level functions, and which stays open for the entire request. Rather
than make each function in the business layer responsible for session management,
you move that responsibility somewhere else. In this section, we’ll take the example of
an ASP.NET application, where you want to execute a bunch of operations during a
single web request.

 Your applications may do lots of things during a single web request—they render
web pages, load data in the persistence layer, carry out business functions, and so on.
In the approach we’ll describe, you can use the same single session throughout the
entire request. This session is opened at the start of the request and closed at the end.
This approach provides several benefits: any un-initialized associations or collections
are successfully initialized when accessed at any point during the request, and a ses-
sion is always available for saving and loading entities. Furthermore, entities aren’t
detached during the request as their session is not closed.

 Despite the benefits of this session-per-request approach, don’t be tempted to get lazy
and let NHibernate always load data on demand; it may eventually kill your application’s

Why can’t NHibernate open a new connection (or session) if it has to lazy
load associations?
First, we think it’s a better solution to fully initialize all required objects for a specific
use case using eager fetching (this approach is less vulnerable to the n+1 selects
problem). Furthermore, opening new database connections (and ad hoc database
transactions!) implicitly and transparently to the developer exposes the application
to transaction-isolation issues. When do you close the session and end the ad hoc
transaction—after each lazy association is loaded?

We strongly prefer transactions to be clearly and explicitly demarcated by the appli-
cation developer. If you want to enable lazy fetching for a detached instance, you can
use Lock() to attach it to a new session.

334 CHAPTER 10 Architectural patterns for persistence
performance. Always eagerly load the data you know you’ll need. For more details, read
section 7.7.1.

 A simple way of implementing session-per-request is to open and attach an NHiber-
nate session at the beginning of the web request. ASP.NET lets you implement the
IHttpModule interface in order to execute code at the beginning and end of a web
request. Listing 10.5 shows how to leverage this feature.

using NHibernate.Context;
public class NHibernateCurrentSessionWebModule : IHttpModule {
 public void Init(HttpApplication context) {
 context.BeginRequest += new EventHandler(Application_BeginRequest);
 context.EndRequest += new EventHandler(Application_EndRequest);
 }
 public void Dispose() {
 }
 private void Application_BeginRequest(object sender, EventArgs e) {
 ISession session = NHibernateHelper.OpenSession();
 session.BeginTransaction();
 CurrentSessionContext.Bind(session);
 }
 private void Application_EndRequest(object sender, EventArgs e) {
 ISession session = CurrentSessionContext.Unbind(
 NHibernateHelper.SessionFactory);
 if (session != null)
 try {
 session.Transaction.Commit();
 }
 catch(Exception ex) {
 session.Transaction.Rollback();
 Server.Transfer("...", true);
 }
 finally {
 session.Close();
 }
 }
}

At the beginning of a request B, you open and attach a session. At its end C, you
detach and close the session. You also commit the changes that happen thorough the
request’s lifetime.

 The following code must be added to the Web.config file:

<configuration>
 <system.web>
 <httpModules>
 <add name="NHibernateCurrentSessionWebModule"
 type="NHiA.NHibernateCurrentSessionWebModule" />
 </httpModules>
 </system.web>
</configuration>

This code is required to register your web module so ASP.NET uses it.

Listing 10.5 Web module managing NHibernate sessions

B

C

335Implementing conversations
 Now, the PlaceBidForItem() method is how you want it to be:

public void PlaceBidForItem(long itemId, long userId, double bidAmount) {
 try {
 ItemDAO itemDAO = daoFactory.GetItemDAO();
 Item item = itemDAO.FindByIdAndLock(itemId);
 double maxBidAmount = itemDAO.GetMaxBid(itemId).Amount;
 User bidder = daoFactory.GetUserDAO().FindById(userId);
 item.PlaceBid(bidder, bidAmount, maxBidAmount);
 } catch (Exception ex) {
 throw new BusinessException("Placing the bid failed.", ex);
 }
}

If you want to call some other method (such as UpdateItemPopularity()) after this,
you can do so using the same session and transaction. You have a session that lives as
long as the web request.

You can build almost any application using this approach, although sometimes you
may feel you need something more. For example, what if you have a long operation
that is completed over several web requests? Is there a better way to handle those lon-
ger use cases? We’ll look at this next.

10.2 Implementing conversations
You’ve implemented your persistence layer, and you may think that you’re finished.
Unfortunately, not quite! There is a common real-world scenario that your persistence
layer hasn’t accommodated: long-running conversations.

 We discussed the notion of conversations in section 5.2. Despite discussing the
mechanics of these features, we didn’t explain how they’re used in the context of real
NHibernate applications; we now return to this essential subject.

 When you’re using a command-oriented framework (for example, ADO.NET),
each API call is meant to retrieve or change data: it adds/updates/deletes rows in a
database. But NHibernate’s API takes a different approach: it’s state oriented. Rather

Do I really have to write all this infrastructure code?
In this chapter we explain how you can write your own data access objects, HTTP mod-
ules for ASP.NET session management, and various other useful infrastructure-relat-
ed components.

Understanding how to do this is great, but you don’t have to write this code yourself.
Many people have done this for you already! Existing NHibernate libraries take care
of much of the hard work, and include the best practices described here. After read-
ing this section, we encourage you to research some of those libraries, including NHi-
bernate Burrow, Castle ActiveRecord, Rhino Tools, and S#arp Architecture.

Even if you decide not to use any of them, you can learn a great deal by browsing the
code of these libraries.

336 CHAPTER 10 Architectural patterns for persistence
than execute a command to cause a direct result in the database, each API call is
meant to change the state of an entity (as illustrated in figure 5.1).

 Changing the state of an entity may lead to the execution of a SQL command
immediately, or it may lead to execution some time later when the session is flushed.
Alternatively, it may never lead to the execution of SQL, such as when you’re using
FlushMode.Never, and may decide to cancel a set of updates. It’s important to be
aware of this difference when you’re implementing operations that span many user
requests (conversations).

 In an application that uses NHibernate, you can implement conversations three
ways: using a long session, using detached objects, and loading objects on each request. We’ll
start with the latter; it’s by far the simplest and is particularly well suited to web appli-
cations. First, you need a use case with which to illustrate these ideas.

10.2.1 Approving a new auction

Your auction has an approval cycle. A new item
is created in the Draft state. The user who cre-
ated the auction may place the item in the
Pending state when the user is satisfied with the
item details. System administrators may then
approve the auction, placing the item in the
Active state and beginning the auction. At any
time before the auction is approved, the user
or any administrator may edit the item details.
Once the auction is approved, no user or administrator may edit the item. It’s essen-
tial that the approving administrator sees the most recent revision of the item details
before approving the auction and that an auction can’t be approved twice. Figure 10.2
shows the item-approval cycle.

 The conversation is auction approval, which spans two user requests (and possibly
many web requests over many days). First, the administrator selects a pending item to
view its details; second, the administrator approves the auction, moving the item to
the Active state. The second request must perform a version check to verify that the
item hasn’t been updated or approved since it was retrieved for display.

 As usual, the business logic for approving an auction should be implemented by
the domain model. In this case, you add an Approve() method to the Item class:

public void Approve(User byUser) {
 if (!byUser.IsAdmin)
 throw new PermissionException("Not an administrator.");
 if (state.equals != ItemState.Pending)
 throw new BusinessException("Item not pending.");
 state = ItemState.Active;
 approvedBy = byUser;
 approvalDatetime = DateTime.Now;
}

Change Item

New Item

Set for approval

Approve

Draft

Pending

Active

Figure 10.2 State chart of the item-
approval cycle in CaveatEmptor

337Implementing conversations
This code should give you a feel for what the use case is about. Now we can look at
how to implement the conversation that realizes this use case. As we said, you can
choose from three approaches when implementing conversations, and we’ll start by
demonstrating the simplest one.

10.2.2 Loading objects on each request

A simple way to implement conversations is to load all persistent instances at the
beginning of a request and discard them at the end (web request or otherwise). If
you’ve worked with ASP.NET applications, you may be used to doing this using Linq to
SQL, DataSets, or DataReaders.

 We like this approach because it’s simple to manage and implement, but it also has
a few caveats. Let’s use our use case to explain them.

 The longer the administrator spends deciding whether to approve the auction, the
greater the risk that some other user will edit the auction details, thus making the dis-
played Item out of date (the page is showing stale data). Suppose your first request
executed the following code to retrieve the auction details:

public Item ViewItem(long itemId) {
 return itemDAO.FindById(itemId);
}

In a typical web request, you’d load the Item, display it on screen, and then discard it.
You’d need to store the identifier value somewhere so you could retrieve the same
Item again for use in the next request, after the administrator clicked the Approve
button to approve the Item. It seems superficially reasonable that the newly loaded
Item would hold nonstale data for the duration of the second database transaction, so
all is well.

 Not so! This notion has one problem: the data might have gone out of date while
the administrator was looking at it (someone else could have updated it). It’s possible

Are conversations really transactions?
Most books define transaction in terms of the ACID properties: atomicity, consisten-
cy, isolation, and durability. Is a conversation a transaction by that definition? Con-
sistency and durability don’t seem to be a problem, but what about atomicity and
isolation? Our example is both atomic and isolated, because all update operations
occur in the last request/response cycle (that is, the last database transaction). But
our definition of a conversation permits update operations to occur in any request/
response cycle. If a conversation performs an update operation in any but the final
database transaction, it isn’t atomic and may not even be isolated. Nevertheless, we
feel that the term transaction is appropriate, because systems with this kind of con-
versation usually have functionality or a business process that lets the user compen-
sate for the lack of atomicity (allowing the user to roll back steps of the conversation
manually, for example).

338 CHAPTER 10 Architectural patterns for persistence
that the administrator based the decision to approve the Item on false information.
Reloading the Item to approve it in another request wouldn’t help at all, because the
reloaded state wouldn’t be shown on screen and wouldn’t be used for anything—at least, it
couldn’t be used in deciding whether the auction should be approved, which is the
important thing.

 To ensure that the entity’s state at the time of approval is the same as the entity’s
state at the time of viewing, you need to perform an explicit manual version check. The
following code demonstrates how this can be implemented by the business layer:

public void ApproveAuction(long itemId,
 int itemVersion,
 long adminId) {
 Item item = itemDAO.FindById(itemId);
 if (itemVersion != item.Version))
 throw new StaleItemException();
 User admin = userDAO.FindById(adminId);
 item.Approve(admin);
}

In this case, the manual version check isn’t difficult to implement. You take note of
the version of the record that was loaded in the first request, and then you make sure
it’s the same when you decide to approve it in the second request.

 Despite its simplicity, this load-objects-on-each-request approach doesn’t always fit
the bill; you may consider one of the other approaches that we tackle in the next sec-
tion. For example, this approach may not work in a more complex use case that has
many relationships and related objects. It would be tedious to perform all the version
checks manually for all objects that are to be updated. These manual version checks
should be considered noise—they implement a purely systemic concern not expressed
in the business problem.

 Some would argue that the previous code snippet contains other unnecessary
noise, too; you already retrieved the Item and User in previous requests. Is it necessary
to reload them in each request? It should be possible to simplify the control code to
the following:

public ApproveAuction(Item item, User admin) {
 item.Approve(admin);
}

Doing so not only saves three lines of code but is also arguably more object oriented—the
system is working mainly with domain model instances instead of passing around iden-
tifier values. This code is also quicker, because it saves two SQL SELECT queries that use-
lessly reload data. How can you achieve this simplification using NHibernate?

10.2.3 Using detached persistent objects

Suppose you kept the Item as a detached instance (this approach is common in Win-
dows applications). You could reuse it in the second database transaction by reassoci-
ating it with the new NHibernate session using either Lock() or Update(). Let’s see
what these two options look like.

339Implementing conversations
 In the case of Lock(), you adjust the ApproveAuction() method to look like this:

public void ApproveAuction(Item item, User admin) {
 try {
 NHibernateHelper.GetCurrentSession()
 .Lock(item, LockMode.None);
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
 item.Approve(admin);
}

The call to ISession.Lock() reassociates the item with the new NHibernate session
and ensures that any subsequent change to the state of the item is propagated to the
database when the session is flushed (for a discussion of the different LockModes, see
section 5.1.8).

 Because Item is versioned (if you map a <version> property), NHibernate checks the
version number when synchronizing with the database, using the mechanism described
in section 5.2.1. You don’t have to use a pessimistic lock, as long as concurrent transac-
tions are allowed to read the item in question while the approval routine runs.

 Of course, it would be better to hide NHibernate code in a new DAO method, so
you add a new Lock() method to the ItemDAO. Doing so lets you simplify the Approve-
Auction() method as follows:

public ApproveAuction(Item item, User admin) {
 itemDAO.Lock(item, false);
 item.Approve(admin);
}

Alternatively, you can use Update(). For the example, the only real difference is that
Update() can be called after the state of the item has been modified, which would be
the case if the administrator made changes before approving the auction:

public ApproveAuction(Item item, User admin) {
 item.Approve(admin);
 itemDAO.MakePersistent(item);
}

Again, NHibernate performs a version check when updating the item.
 Is this implementation, using detached objects, any simpler than the load-objects-

on-every-request approach? You still need an explicit call to the ItemDAO, so the point
is arguable. In a more complex example involving associations, you’ll see more
benefit, because the call to Lock() or Update() may cascade to associated instances.
And let’s not forget that this implementation is more efficient, avoiding the unneces-
sary SELECTs.

 Nevertheless, we’re not satisfied. Is there a way to avoid the need for explicit reas-
sociation with a new session? One way is to use the same NHibernate session for both
database transactions, a pattern we described in chapter 5 as session-per-conversation or
long session.

“false” means
not pessimistic

340 CHAPTER 10 Architectural patterns for persistence
10.2.4 Using the session-per-conversation pattern

A long session is an NHibernate session that spans a whole conversation, allowing
reuse of persistent instances across multiple database transactions. This approach
avoids the need to reassociate detached instances created or retrieved in previous
database transactions.

 A session contains two important kinds of state: a cache of persistent instances and
an ADO.NET IDbConnection. We’ve already stressed the importance of not holding
database resources open across multiple requests. The session needs to release its con-
nection between requests if you intend to reuse it in the many web requests that may
span the conversation.

 As explained in section 5.1.4, NHibernate 1.2 keeps the connection open from the
first time it’s needed to the moment the transaction is committed. Committing the
transaction at the end of each request is enough to close the connection. You don’t
want that, because a closed session is useless in subsequent transactions.

 Listing 10.5 used the web context to store the session. This strategy uses HttpCon-
text, and the session lives only as long as the request. How do you make your session
usable across multiple requests?

 The simplest solution is to keep the NHibernate session in the ASP.NET session
state, so that it’s available from one request to another. You’ll use this approach in the
following example.

 Let’s write a new web module called NHibernateConversationWebModule (see list-
ing 10.6). It will store the NHibernate session between requests instead of discarding
it. It will also handle the reattaching of the session to the new context.

public class NHibernateConversationWebModule : IHttpModule {
 const string NHibernateSessionKey =
 "NHiA.NHibernateSession";
 const string EndOfConversationKey = "NHiA.EndOfConversation";
 public static void
 EndConversationAtTheEndOfThisRequest() {
 HttpContext.Current.Items[EndOfConversationKey] = true;
 }
 public void Init(HttpApplication context) {
 context.PreRequestHandlerExecute +=
 new EventHandler(OnRequestBeginning);
 context.PostRequestHandlerExecute +=
 new EventHandler(OnRequestEnding);
 }
 public void Dispose() {
 }
 private void OnRequestBeginning(object sender,
 EventArgs e) {

 ISession currentSession =
 (ISession)HttpContext.Current.Session[NHibernateSessionKey];
 if (currentSession == null) {

Listing 10.6 NHibernateConversationWebModule for conversations

B

C

D

E

F
G

341Implementing conversations
 currentSession = NHibernateHelper.OpenSession();
 currentSession.FlushMode = FlushMode.Never;
 }
 CurrentSessionContext.Bind(currentSession);
 currentSession.BeginTransaction();
]
 private void OnRequestEnding(object sender,
 EventArgs e) {

 ISession currentSession =
 CurrentSessionContext.Unbind(NHibernateHelper.SessionFactory);

 if (HttpContext.Current.Items[EndOfConversationKey]
 != null) {
 currentSession.Flush();
 currentSession.Transaction.Commit();
 currentSession.Close();
 HttpContext.Current.Session[NHibernateSessionKey] = null;
 }
 else {
 currentSession.Transaction.Commit();
 HttpContext.Current.Session[NHibernateSessionKey] =
 currentSession;
 }
 }
}

Because you’ll be storing the NHibernate session in a map, you need a key B to define
its location. Because the business logic is responsible for ending the conversation, it
needs to call the EndConversationAtTheEndOfTheRequest() method C to set a value
in the current context that will be used at the end of the request. The initialization of
the module D registers events for the beginning and the end of requests. Note that
you aren’t using the same events as in listing 11.5 because these let you access the
ASP.NET session state.

 When beginning a new request E, if a conversation is already running, you extract
its detached NHibernate session from the ASP.NET session state F. Otherwise G, you
start a new conversation by opening a new session. We’ll explain why you set its flush
mode to never H in the next section. Once you have the NHibernate session of the
running conversation, you bind it to the current context I and begin a new transac-
tion. At this point, the conversation is ready to be used anywhere in this web request.

 When the time comes to end the request J, you detach its NHibernate session
from the current context 1). If the value to end the conversation was set 1!, you man-
ually flush the session 1@ to process all the changes made in the conversation, you
commit these changes, you close the session, and you then remove the NHibernate
session from ASP.NET session state. If the conversation is suspended 1#, you commit
the transaction to close its database connection, and you store the session in the
ASP.NET session state. This conversation will resume when the next request starts.

 This implementation isn’t complete because the exception-handling part is miss-
ing. Refer to the CaveatEmptor source code for an example. Basically, these methods

H

I

J

1)

1!
1@

1#

342 CHAPTER 10 Architectural patterns for persistence
should be inside a try/catch statement. When catching an exception, you should roll
back the current transaction and detach and then close the current session. There is
also another issue that we’ll cover in the next section.
STARTING, CONTINUING, AND ENDING A CONVERSATION

Now let’s see how you can use this conversation module (don’t forget to register it). If
you recall, in the example the administrator is viewing and then approving an auc-
tion. You’ll have a conversation that spans two web requests: the first to view the action
and the second to approve it.

 The following ASP.NET web page displays the auction’s item when loading (first
request), and it provides a button to approve this auction (second request):

public partial class ApproveItem : System.Web.UI.Page {
 //...
 const string ItemKey = "NHiA.ItemKey";
 protected void Page_Load(object sender, EventArgs e) {
 if (!IsPostBack) {
 long itemId = long.Parse(Context.Request.QueryString["Id"]);

 Item item = itemDAO.FindById(itemId);
 Session[ItemKey] = item;
 editItemName.Text = item.Name; // ... Show the item
 btnApprove.Click += new EventHandler(btnApprove_Click);
 }
 }
 protected void btnApprove_Click(object sender, EventArgs e) {

 Item item = (Item) Session[ItemKey];
 item.Approve(loggedUser);

 NHibernateConversationWebModule.EndConversationAtTheEndOfThisRequest();
 Context.Response.Redirect("Default.aspx");
 }
}

In this example, you store the item in the ASP.NET session state between the requests
(don’t forget to enable the session).

 In the case of a Windows application, the implementation of a conversation is sim-
pler because you can store everything locally in memory. It’s also possible to mimic
this example by using the CallContext class.
CANCELLING A CONVERSATION

You can also support canceling a conversation. All you have to do is replace the
EndConversationAtTheEndOfTheRequest() method with two methods: one to accept
the changes and another one to cancel them. Then you must distinguish these values
when ending the conversation. You cancel the conversation by closing the session
without flushing it.

 There is an exception to this solution. To help you understand this problem, we
need to explain some theory behind the implementation of conversations. Then we’ll
describe how to deal with the problem.

First request
implicitly starts

conversation

Second request uses
conversation and ends it

343Implementing conversations
GUARANTEEING ATOMICITY AND COMPENSATING FOR CHANGES

A conversation is supposed to behave like a database transaction, so one of its require-
ments is to be atomic. In order to guarantee the atomicity of a conversation, all the
changes made by the requests should be committed only when ending the conversation.

 But by default, committing a transaction makes NHibernate commit the detected
changes to the database. The session is flushed at that moment, collecting all the
changes made since it was opened and executing the corresponding SQL commands.

 The solution to change this behavior is to set the NHibernate session to FlushMode.
Never, as we’ve done in listing 10.6.

 To propagate any changes to the database, you must explicitly flush the session
when you’re ready (at the end of the conversation). Until then, all changes are
tracked inside the NHibernate session, and no database commands are issued. Note
that any queries involving the database aren’t aware of these unflushed changes, so
they may return stale data.

 Now the exception: When you ask the session to Save() an entity whose identifier
is generated by the database, perhaps using an identity column, NHibernate must save
this entity immediately in order to retrieve its identifier. This can cause side effects if
you have triggers, constraints, and keys set up, for example.

 Another related consideration is that if the conversation is then canceled, it will be
necessary to revert these changes in the database by deleting the stub record or undo-
ing any database triggers that were fired. If the NHibernate session throws an excep-
tion during the conversation; you should perform a similar cleanup, end the
conversation, and close the session.

 You can look at the IInterceptor API (used in section 9.4) to keep track of these
permanent changes and revert them if necessary. Alternatively, you can avoid using
auto-generated identifiers in your database.

 Sometimes, you may want conversations to persist changes at each request. This
lets you ensure a recovery mechanism in case of a system failure. In this case, you
again have to provide compensation actions whenever a conversation is cancelled, to
clean up any database debris.

 There’s one final potential complication in guaranteeing atomicity with the long
session approach: NHibernate’s ISession implementation isn’t thread-safe. If an envi-
ronment allows multiple requests from the same user to be processed concurrently,
it’s possible that these concurrent requests can obtain the same NHibernate ISession
instance. This will result in unpredictable behavior. This problem also affects the
previous approach, which uses detached objects, because detached objects also
aren’t thread-safe. This problem affects any application that keeps mutable state in a
non-thread-safe cache.

 Because this isn’t a generic problem, we’ll leave it to you to find an appropriate
solution if you’re confronted with it. It’s worth mentioning that the NHibernate.Bur-
row project may offer some valuable insights, because it’s specifically designed to help
ASP.NET work with the session-per-conversation pattern. Another good solution is to

344 CHAPTER 10 Architectural patterns for persistence
reject any new request if a request is already being processed for the same user. Other
applications may need to serialize requests from the same user. Note that this isn’t a
problem for web applications that use the ASP.NET session state: concurrent requests
(from the same user) are automatically serialized, so the second request waits until
the first completes.

 Now that we’ve covered three different ways to deal with conversations, you may be
confused when trying to choose one for your application. When are each of the three
conversation approaches we’ve discussed relevant?

10.2.5 Choosing an approach to conversations

Our default recommendation for NHibernate web applications is to use the load-
objects-on-every-request approach, where you create one NHibernate session per
request. It’s easy to understand and in many cases easier to implement than the other
approaches. It’s particularly well suited to architectures in which you’re unable to
keep state associated with the user because you’re using a stateless framework. This
approach will especially appeal to those who prefer to avoid using the ASP.NET ses-
sion. Another good fit for this approach is in architectures where the web tier should
never access the domain model directly, and so the domain model is completely hid-
den from the presentation layer behind an intermediate Data Transfer Object (DTO)
abstraction layer.

 The second most popular approach in NHibernate applications uses detached
objects, with a new session per database transaction. In particular, this is the method
of choice for an application where business logic and data access execute in the data
access layer but the domain model is also used in the presentation tier, avoiding the
need for tedious DTOs. This approach is even being used successfully in Windows
applications. But we think that in many cases, it isn’t the best approach.

 More complex cases may be suited to the long-session approach, especially Win-
dows Forms applications. So far, we’ve found this approach difficult to explain, and it
isn’t well understood in the NHibernate community. We suppose this is because the
notion of a conversation isn’t widely understood, and most developers aren’t used to
thinking about problems in terms of conversations. We hope this situation changes
soon, because this idea is useful even if you don’t use the long-session approach.

 The next step is to see how you can take this code and adapt it to run in an Enter-
prise Services application. Obviously, you’d like to change as little as possible. We’ve
been arguing all along that one advantage of POCOs and transparent persistence is
portability between different runtime environments. If you now have to rewrite all the
code for placing a bid, we’re going to look silly.

10.3 Using NHibernate in an Enterprise Services application
By Enterprise Services application, we mean an application that takes advantage of the
distributed transaction service of .NET Enterprise Services. Chapter 5 contains a brief
explanation of the steps required to make an NHibernate application participate in a
distributed transaction. Now you’ll implement this approach.

345Using NHibernate in an Enterprise Services application
 First, we must cover an issue linked to interprocess requests. Whenever you have
physically separated components/tiers, you must minimize the communication
between them. This is important because latency is added by every interprocess
request, increasing the application response time and reducing concurrency due to
the need for either more database transactions or longer transactions. These issues
can strongly influence the scalability of your application.

 It’s essential that all data access related to a single user request occur within a single
request to the persistence layer. This means you can’t use a lazy approach, where the pre-
sentation layer pulls data as needed. Instead, the business layer must accept responsi-
bility for fetching all data that will be needed subsequently by the presentation layer.

 The ubiquitous DTO pattern provides a way of packaging the data the presentation
layer will need. A DTO is a class that holds the state of a particular entity; you can think
of a DTO as a POCO without any business methods. But because DTOs tend to dupli-
cate entities, we naturally find ourselves questioning the need for DTOs.

10.3.1 Rethinking DTOs

DTOs are commonly used to totally separate the presentation tier from the domain
model. Certain reasonable arguments can be made in favor of this approach, but you
shouldn’t mistake these arguments for the real reason why DTOs are useful.

 The idea behind the DTO pattern is that fine-grained remote access is slow and
unscalable. It’s also useful when the domain model can’t be made serializable. In this
case, another object must be used to package and carry the state of the business
objects between tiers.

 There are now twin justifications for the use of DTOs: first, DTOs implement exter-
nalization of data between tiers; second, DTOs enforce separation of the presentation tier
from the business-logic tier. Only the second justification applies to you, and the benefit
of this separation is questionable when weighed against its cost. We won’t tell you never
to use DTOs (sometimes we’re less reticent). Instead, we’ll list some arguments for and
against use of the DTO pattern in an application that uses NHibernate and ask you to
carefully weigh these arguments in the context of your own application.

 It’s true that the DTO removes the direct dependency of the presentation tier on
the domain model. If your project partitions the roles of .NET developer and web
designer, this may be of some value. In particular, the DTO lets you flatten domain-
model associations, transforming the data into a format that is perhaps more conve-
nient for presentation purposes (it may greatly ease data binding). But in our experi-
ence, it’s normal for all layers of the application to be highly coupled to the domain
model, with or without the use of DTOs. We don’t see anything wrong with that, and
we suggest that it may be possible to embrace the fact.

 The first clue that something is wrong with DTOs is that, contrary to their title, they
aren’t objects. DTOs define state without behavior. This is immediately suspect in the
context of object-oriented development. Even worse, the state defined by the DTO is
often identical to the state defined in the business objects of the domain model—the
supposed separation achieved by the DTO pattern can also be viewed as mere duplication.

346 CHAPTER 10 Architectural patterns for persistence
 The DTO pattern exhibits two of the code smells described in Refactoring:
Improving the Design of Existing Code [Fowler 1999]. The first is the shotgun-change
smell, where a small change to a system requirement requires changes to multiple
classes. The second is the parallel class hierarchies smell, where two different class hier-
archies contain similar classes in a one-to-one correspondence. The parallel class
hierarchy is evident in this case—systems that use the DTO pattern have Item and
ItemDTO, User and UserDTO, and so on. The shotgun-change smell manifests itself
when you add a new property to Item: you must change not only the presentation
tier and the Item class, but also the ItemDTO and the code that assembles the Item-
DTO instance from the properties of an Item (this last piece of code is especially
tedious and fragile).

 Of course, DTOs aren’t all bad. The code we just referred to as “tedious and frag-
ile”—the assembler—has value even in the context of NHibernate. DTO assembly pro-
vides a convenient point at which to ensure that all data the presentation tier needs is
fully fetched before returning control to the presentation tier. If you find yourself
wrestling with NHibernate LazyInitializationExceptions in the presentation tier,
one possible solution is to try the DTO pattern, which imposes extra discipline by
requiring that all needed data is copied explicitly from the business objects (we don’t
find that we need this discipline, but your experience may vary).

 Finally, DTOs may have a place in data transfer between loosely coupled applica-
tions (our discussion has focused on their use in data transfer between tiers of the
same application). But typed DataSets seem better adapted to this problem.

 You can consider a typed DataSet as a special kind of DTO. There are definitively
good reasons to use DataSets: an extensive toolset is available, and many existing
libraries use DataSets. But writing custom classes as DTOs gives you better control over
the design of your application even if the code is tedious to write.

 You won’t use DTOs in the CaveatEmptor application. Now that we’ve covered the
potential issues that may occur when you’re dealing with physically separated tiers, we
can go back to distributed transactions.

10.3.2 Enabling distributed transactions for NHibernateHelper

You must apply a few changes to the previous NHibernateHelper class to enable distrib-
uted transactions. First, you must add a reference to the System.EnterpriseServices
assembly and change the class definition like this:

[Transaction(TransactionOption.Supported)]
public class NHibernateHelper : ServicedComponent {
 //...
}

You must also add the following methods to the management of the transaction:
BeginTransaction(), CommitTransaction(), and RollbackTransaction(). They’re
used to create, commit/roll back, and close the distributed transaction. Here are the
two first methods:

347Summary
public static void BeginTransaction() {
 ServiceConfig sc = new ServiceConfig();
 sc.Transaction = TransactionOption.RequiresNew;
 ServiceDomain.Enter(sc);
}
public static void CommitTransaction() {
 try {
 ContextUtil.SetComplete();
 ServiceDomain.Leave();
 }
 catch(HibernateException ex) {
 throw new InfrastructureException(ex);
 }
}

In order to take part in the distributed transaction, the NHibernate session’s transac-
tion must be enlisted. Note that you have to use .NET reflection here because the
method used isn’t part of the IDbConnection interface:

private static void TryEnlistDistributedTransaction(ISession session) {
 if (ContextUtil.IsInTransaction) {
 IDbConnection conn = session.Connection;
 MethodInfo mi = conn.GetType().GetMethod(
 "EnlistDistributedTransaction",
 BindingFlags.Public | BindingFlags.Instance);
 if (mi != null)
 mi.Invoke(conn,
 new object[] {
 (System.EnterpriseServices.ITransaction)
 ContextUtil.Transaction });
 }
}

If the EnlistDistributedTransaction() method isn’t available, this code silently
fails to enlist the transaction. If it represents an error in your use case, you should
throw an exception. You can even avoid reflection if you know which type of database
connection is used.

 Assuming that the application must always try to enlist the distributed transaction,
you can change the implementation of the OpenSession() method:

public static ISession OpenSession() {
 ISession session = SessionFactory.OpenSession();
 TryEnlistDistributedTransaction(session);
 return session;
}

All that’s left to do is update the code to use these new methods. Don’t forget to regis-
ter the resulting COM+ assembly (which must be signed) before you use it. To do so,
you use the command-line executable RegSvcs.

10.4 Summary
This chapter focused on the design of the persistence layer. We first introduced the
NHibernateHelper class, which is useful to abstract the initialization of NHibernate.

348 CHAPTER 10 Architectural patterns for persistence
We also showed you how to move from a monolithic method that mixes all the con-
cerns to a neat architecture with a clear separation between the layers.

 We illustrated a smart domain model by implementing business logic in the Cave-
atEmptor Item class. This was the first step of a series of refactorings.

 You used the DAO pattern to create a façade for the persistence layer, hiding NHi-
bernate’s internals from the other layers. We also introduced the ISessionFactory.
GetCurrentSession() API and the notion of context. You used this feature to signifi-
cantly improve your DAOs by making them share the same session without having to
pass the session as a parameter and without using a global static session.

 After that, you leveraged the .NET 2.0 generics to reduce the redundancies in the
persistence layer. You also designed the persistence layer so the other layers were
unaware of the persistence framework that was used. You even made it possible to
switch from one implementation to another by changing a single line of code.

 We explained how to make a session live for an entire web request. This is useful to
guarantee that a single session is used for all processing and that lazy loading always
works transparently.

 Chapter 5 introduced the notion of a conversation (also called application/busi-
ness transaction). In this chapter, we provided three ways of implementing conversa-
tions: the load-objects-on-each-request approach, which is simple and suits many web
applications; the approach that uses detached persistent objects, which is useful in
stateless environments; and the approach that uses long-living sessions. The last
approach is relatively unknown; but it’s powerful, especially in a rich environment.

 This chapter ended by improving the NHibernateHelper class to support Enter-
prise Services transactions. We discussed the potential latency issue and the DTO pat-
tern. Although this pattern can be useful when decoupling the domain model is
important, we agree that such a situation is rare and that the cost of maintaining the
DTO is too high.

 At this point, you should have all the technical knowledge required to leverage the
features of NHibernate. It’s a powerful tool, but it requires a deep understanding of its
behavior to be correctly used.

 NHibernate has a growing, enthusiastic community. We hope that you’ll enjoy
being part of it. The Google nhusers forum is frequented by many of the NHibernate
developers, so feel free to drop by to find answers to your questions and join in the
discussions. Also, we recommend http://nhforge.org for its wealth of blog posts and
articles. It’s also a great place to keep up with new NHibernate developments.
Happy NHibernating!

http://nhforge.org

appendix A:
SQL fundamentals

This book assumes that you have a basic understanding of relational databases and
the Structured Query Language (SQL). It will be easier for you to learn some of the
advanced features of NHibernate if you already have a sound knowledge of SQL.
This appendix gives a brief overview of the fundamentals of SQL. We highly recom-
mend that you find a book to learn more about it.

Tables
A table, with its rows and columns, is a familiar sight to anyone who has worked
with an SQL database. Sometimes you’ll see tables referred to as relations, rows as
tuples, and columns as attributes. This is the language of the relational data model,
the mathematical model that SQL databases (imperfectly) implement.

Relational model
The relational model lets you define data structures and constraints that guarantee
the integrity of your data (for example, by disallowing values that don’t accord with
your business rules). The relational model also defines the relational operations of
restriction, projection, Cartesian product, and relational join. These operations let
you do useful things with your data, such as summarize or navigate it.

 Each of the operations produces a new table from a given table or combination
of tables. SQL is a language for expressing these operations in your application
(therefore called a data language) and for defining the base tables on which the
operations are performed.

DDL and DML
You write SQL Data Definition Language (DDL) statements to create and manage
the tables. We say that DDL defines the database schema. Statements such as CREATE
TABLE, ALTER TABLE, and CREATE SEQUENCE belong to DDL.
349

350 APPENDIX A SQL fundamentals
 You write SQL Data Manipulation Language (DML) statements to work with your
data at runtime. Let’s describe these DML operations in the context of tables from the
CaveatEmptor application.

 In CaveatEmptor, you naturally have entities like items, users, and bids. Assume
that the SQL database schema for this application includes an ITEM table and a BID
table. You can create the data types, tables, and constraints for this schema with SQL
DDL (CREATE and ALTER operations).

Table operations
Insertion is the operation of creating a new table from an old table by adding a row. SQL
databases perform this operation in place, so the new row is added to the existing table:

insert into ITEM values (4, 'Fum', 45.0)

An SQL update modifies an existing row:

update ITEM set INITIAL_PRICE = 47.0 where ITEM_ID = 4

A deletion removes a row:

delete from ITEM where ITEM_ID = 4

But the real power of SQL lies in querying data.

Queries
A single query may perform many relational operations on several tables. Let’s look at
the basic operations.

 Restriction is the operation of choosing rows of a table that match a particular crite-
rion. In SQL, this criterion is the expression that occurs in the where clause:

select * from ITEM where NAME like 'F%'

Projection is the operation of choosing columns of a table and eliminating duplicate
rows from the result. In SQL, the columns to be included are listed in the select
clause. You can eliminate duplicate rows by specifying the distinct keyword:

select distinct NAME from ITEM

A Cartesian product (also called a cross join) produces a new table consisting of all possi-
ble combinations of rows from two existing tables. In SQL, you express a Cartesian
product by listing tables in the from clause:

select * from ITEM i, BID b

A relational join produces a new table by combining the rows of two tables. For each
pair of rows for which a join condition is true, the new table contains a row with all
field values from both joined rows. In ANSI SQL, the join clause specifies a table join;
the join condition follows the on keyword.

 For example, to retrieve all items that have bids, you join the ITEM and BID tables
on their common ITEM_ID attribute:

select * from ITEM i inner join BID b on i.ITEM_ID = b.ITEM_ID

351Queries
A join is equivalent to a Cartesian product followed by a restriction. So, joins are often
instead expressed in theta style, with a product in the from clause and the join condi-
tion in the where clause. This SQL theta-style join is equivalent to the previous ANSI-
style join:

select * from ITEM i, BID b where i.ITEM_ID = b.ITEM_ID

Along with these basic operations, relational databases define operations for aggregat-
ing rows (GROUP BY) and ordering rows (ORDER BY):

select b.ITEM_ID, max(b.AMOUNT)
from BID b
group by b.ITEM_ID
having max(b.AMOUNT) > 15
order by b.ITEM_ID asc

SQL was called a structured query language in reference to a feature called subselects.
Because each relational operation produces a new table from an existing table or
tables, an SQL query can operate on the result table of a previous query. SQL lets you
express this using a single query, by nesting the first query inside the second:

select *
from (
select b.ITEM_ID as ITEM, max(b.AMOUNT) as AMOUNT
from BID b
group by b.ITEM_ID
)
where AMOUNT > 15
order by ITEM asc

The result of this query is equivalent to the previous one.
 A subselect can appear anywhere in an SQL statement. The case of a subselect in

the where clause is the most interesting:

select * from BID b where b.AMOUNT >= (select max(c.AMOUNT) from BID c)

This query returns the largest bid in the database.
 where clause subselects are often combined with quantification. The following

query is equivalent:

select * from BID b where b.AMOUNT >= all(select c.AMOUNT from BID c)

An SQL restriction criterion is expressed in a sophisticated expression language that
supports mathematical expressions, function calls, string matching, and even more
sophisticated features such as full-text searches:

select * from ITEM i
where lower(i.NAME) like '%ba%'
or lower(i.NAME) like '%fo%'

SQL also includes many other operations that you’ll want to learn about as you
become more experienced.

appendix B:
Going forward

You’ve reached the end of this book. What remains is for us to give you some guid-
ance and advice that will help you get started and master NHibernate. In this
appendix, we enumerate the requirements to use NHibernate. Then, we give you a
roadmap to progressively master NHibernate and keep yourself up to date. Finally,
we encourage you to discover the internals of NHibernate and to contribute to and
help improve NHibernate.

What you need
This book assumes that you have some experience with .NET programming. Before
you begin to use NHibernate, you should already have the .NET framework and an
Integrated Development Environment (IDE) like Visual Studio or SharpDevelop.
Note that you can also use Mono (http://www.mono-project.com/), which runs on
other operating systems like Linux.

 The NHibernate binaries, source code, and documentation are available on the
NHibernate SourceForge website: http://sourceforge.net/projects/nhibernate/.
(SourceForge.net is a website that provides free hosting for open source software
(OSS) development projects.)

 Before NHibernate 1.2, two packages were available: nhibernate, containing the
core binaries with source code and documentation; and NHibernateContrib, con-
taining optional useful add-ons for NHibernate. Now, the packages have been
merged. You’ll need NHibernate 1.2 or later to take advantage of .NET 2.0 generics
and nullables.

 You can use NHibernate with most popular database systems. The complete list
is available at http://www.hibernate.org/361.html.

 This is all you need to start using NHibernate.
352

http://www.mono-project.com/
http://sourceforge.net/projects/nhibernate/
http://www.hibernate.org/361.html

353Staying up to date
Practice makes perfect
The next step is to practice using NHibernate, from the simple “Hello World” example
in chapter 2 to a more complex application like CaveatEmptor. We highly encourage
you to develop your own applications to test the core features of NHibernate and then
integrate the advanced features that interest you. At that point, this book will serve as
a reference.

 Make sure you understand the mapping of entities and their persistence lifecycle
and the way NHibernate sessions work. Also be careful of the way you use NHibernate
caching. The book’s three final chapters explain how important the application’s
architecture is.

Problem solving
You’ll often encounter problems while using NHibernate. In most cases, their source
is the misuse of features due to a lack of understanding. For more advice about prob-
lem-solving techniques, see section 8.3. Note that a well-thought-out design will help
you avoid and solve problems; take time to think about the features you want to use
(algorithms) and the architecture of your application (layers, separation of concerns,
and so on).

 If you’re still unable to overcome your difficulties, feel free to ask for help on the
NHibernate forum: http://groups.google.com/group/nhusers. Be sure you explain
your problem in detail, including logs and error messages.

Staying up to date
NHibernate is constantly evolving. Once you feel comfortable using it, you should
keep yourself up to date, because new features can improve your applications’ capabil-
ities and performance. The best way to do that is to regularly read and participate on
the NHibernate forum. It’s also a great place to share your point of view about various
NHibernate-related problems, get feedback about them, and learn how other people
solve them.

 Many other informative and useful resources (documentations, samples, and open
source projects) are available on the internet. You can find a comprehensive list at
http://nhforge.org/wikis/.

 NHibernate has a bug-tracking website: http://jira.nhibernate.org/. You can regis-
ter on this website and report any bugs you encounter (if you aren’t sure it’s a bug, use
the NHibernate forum first); you can also request new features.

 Because NHibernate is OSS, its source code is freely available. Instead of using the
compiled library, you can use the source code to gain more details when debugging
your application.

 Feel free to modify NHibernate whenever you need to, to add a new feature or fix
an existing bug. Don’t forget to make this addition publicly available so that other

http://groups.google.com/group/nhusers
http://nhforge.org/wikis/
http://jira.nhibernate.org/

354 APPENDIX A Going forward
NHibernate users can use and even improve it. You can do so by submitting a patch at
the bug-tracking website (a patch is a file that contains the changes you’ve made in the
source code).

 The bug-tracking website also gives you an idea of the features and bug fixes that
are available in the bleeding-edge version of NHibernate (which the NHibernate
developers are working on). The source code of this version is hosted by Source-
forge.net in an SVN repository. If you’re interested in using this version, read “Getting
Started with the NHibernate Source Code” at http://www.hibernate.org/428.html
and go to http://sourceforge.net/svn/?group_id=73818. Note that although this ver-
sion is generally stable, it can temporally become unstable from time to time.

 After you begin to use the SVN version of NHibernate, you need to take only one
final step to embrace NHibernate completely: joining the development list. This mail-
ing list is used by the developers of NHibernate to discuss its evolution. You can register
and read the archive at http://groups.google.com/group/nhibernate-development.

 This is the end of the book and, we hope, the beginning of a wonderful experi-
ence with NHibernate. Bon voyage!

http://www.hibernate.org/428.html
http://sourceforge.net/svn/?group_id=73818
http://groups.google.com/group/nhibernate-development

index
Symbols

{} syntax 247

A

Abstract Factory, in persistence
layer design 330

access, property 68–70
ACID, applicability to

conversations 337
ActiveWriter 293
Adapter pattern 314
AddAssembly() 40
AddCategory() 61
AddChildCategory() 60

method 119
AddClass() 39
AddXmlFile() 39
ADO.NET 7, 9, 21, 34

connection management 111
connection pool 274
database access

configuration 41–44
DataSet. See DataSet
Entity Framework 11

ADO.NET connection 41
ADO.NET Entity

Framework 18–20
ADO.NET IDbConnection. See

IDbConnection
aggregate function 234
aggregation 82, 234
alias 216

naming convention 216
using with join 226–228

all quantifier 242

Ambler, Scott 92
analysis 52–53
and, logical operator 221
<any> 204–205
any quantifier 242
API (application programming

interfaces)
APIs

Auditable 278
Criteria 208
FetchMode 224
Interceptor 280
MatchMode 220
UserType 302–303

CompositeUserType 176–178
UserType 173–176

application
architecture 260, 320
layered, design of 320, 336
legacy, porting to

NHibernate 215
application transaction 146

avoiding reassociations with
new sessions 340–344

choosing implementation
approach 344

implementing the hard
way 337–338

use case 336
using detached objects

338–340
using long sessions 340–344

architecture 33–38
coupling 10
layered 7–9
three layers 9

argument, binding
arbitrary 213–214

ArgumentNullException 276
arithmetic expressions, support

for 219
asc, ordering query results 222
ASP.NET 13, 342

applications, session
management 332–335

session, storing NHibernate
session in 340

sharing sessions, and 327
assembler, DTO 346
Assert class 264
association 12, 58, 82, 86–91

bidirectional 58, 85, 88–90
cardinality 60
defined 189
fetching 224–225
foreign key 190–192
inverse 89
joining 225
managed 59
many-to-many 60, 193–200
many-to-one 65, 87

polymorphic 201–202
mapping 189–200

for lazy initialization 250
multiplicity 86–87
one-to-many 87–88, 198–199
one-to-one 189–193
parent/child 90–91
polymorphic

mapping 200–205
table-per-concrete-

class 204–205
polymorphism 92
355

INDEX356
association (continued)
primary key 192–193
simplest 87–88
single point 127–129
ternary 197
unidirectional 85–86, 199

many-to-one 87–88
association class 193
association table 130, 193
association-level cascade

style 116
associations, joining 222–231
asynchronous

programming 274
atomic 111
atomicity, guaranteeing

343–344
attribute 349

Column 290
foreign-key 290
index mapping 290
Length 290
not-null 290
sql-type 290
Unique 290
unique-key 290
XML mapping 289

attribute-oriented
programming 65–66

audit log 277
audit logging 277–284

automated 278
manually 278

Auditable API 278
AuditLog 278
AuditLog.LogEvent() 282
AuditLogRecord class 279
automated persistence 55–56
automatic dirty checking

33, 103, 113
availability 273
avg() function 234

B

backtick 72
<bag> 196
bag collection 182, 194, 196

with set semantics 198–199
batch fetching 127, 250
batch update 113
BeginTransaction() 136–137
behavior entity 54
bidirectional 88–90
BindingList 314

BindingSource 314
BLOB 171
bottom-up development 293
bug-solving process 274
bug-tracking website 353
business entity 7

See also domain model
business key 108–110
business layer 8, 266–268

business logic in 310
implementing 266
implementing manual

version checks 338
testing 268

business logic 7
example in domain

model 336
implementing 309–312
tiers of, separating from web

tiers 345
business logic layer 8
business model 52
business object 5

See also domain model
business rule 321

encapsulating in domain
model 324

vs. test 312
See also business logic

business transaction 146
See also conversation

by value equality 108

C

cache 104, 152
cluster scope 153
distributed 162
expiration policy 254
first level 156

managing 157
miss 153
policy 157
process scope 153
region 161
second level 157

controlling 164
timestamp 254
transaction scope 153

cache architecture 155–159
cache provider

choosing 159
Hashtable 159
local, setting up 161
MemCache 163

NCache 163
Prevalence 159
SysCache 159

caching 18, 142, 152–164
example 159
good and bad candidates

for 155
maintaining consistency

across clusters 322
methods used for

lookups 300
object identity, and 154
queries 253–255
reference data 155
strategies 153–155
transaction isolation, and 154

callback API 36–37
CallContext API 327
candidate key 79
Cartesian product 223, 229, 350
cascade attribute 90
cascade style 116–117
cascading delete 90
cascading save 33, 90
CASE 52
CaveatEmptor 52–54

domain model 53–54
changes detection 103, 113
check constraint 289
class

association 193
coarse-grained 167
component, writing 187
DTO 345
entity 167
fine-grained 167
helper 321
immutable 71
parallel hierarchy 346
utility 321
value type 167
wrapping 314

class name qualification 74–75
ClassToTableName() 73
CLOB 171
cluster scope cache 153
cluster-safe design 322
coarse-grained transaction 145
code generation 10

bottom-up development,
and 293

for domain model 12
code smell 346
CodeDom provider 70
CodeGenerator class 292

INDEX 357
CodeSmith 293
collection

bag 182, 194, 196
with set semantics 198–199

columns, avoiding
not-null 188

component 186
using for many-to-many

association 196–198
fetching 128, 225
filtering 240–242
indexed 199
indexed map 194
list 183, 194, 196
map 184
nonindexed 198
ordered 184, 186
persistent 184
polymorphic 203
set 182
sorted 184
wrapper 129, 131

collections
comparison by identity 62
component 189
value-type, mapping 189

column 67
avoiding not-null 188
inconvenient type 302–303

Column attribute 290
<column> element 289
ColumnName() 73
COM+ assembly, distributed

NHibernate 348
command, custom 248
commit 135
Commit() 111, 137
CompareTo() 185
comparison operators and

restriction 218
component 82–86

collections of 186, 190
using for many-to-many

association 196–198
composite identifier class

299–301
composite key 80, 296

mapping table with 298–302
referencing entity with 301

<composite-id> mapping 297
CompositeUserType API

176–178
composition 82

and minimizing
redundancy 329

conceptual view 52
concurrency

database capabilities 7
optimistic checking, issue with

batching 113
reducing 345

concurrency strategy 158
nonstrict-read-write 158
read-only 158
read-write 158

concurrent requests, problems
with 343

concurrent transactions 339
Configuration 34–35
configuration

app.config file 44–46
connection string 46
database access 42–43, 71
NHibernate 31–32, 38–44

advanced 44–48
reflection 70–71
schema 46
steps 43
techniques 40

configuration document 31
Configuration.SetProperty() 41
Configure() 41
connection pool 41
connection string 46

securing 273
connection-release mode 139
consistency 135
control logic, separating from

data access code 324
control, data bound 314
controller, as part of business

layer 266
conversation 16–18

approach, choosing 344
ASP.NET

implementation 342
example 146
guaranteeing atomicity

of 343–344
implementing 335–344
loading objects on each

request 337–338
using detached objects

338–340
using the session-per-conversa-

tion pattern 340–344
vs. transaction 337
working with 146–152

core interfaces 35–36
correlated subquery 242

count() function 234
create command, custom 248
create, read, update, delete

(CRUD) 7
hand-coded 14–15
operations,

implementing 14–15
with DataSets 14
with NHibernate 14
with the data access object

pattern 325
CreateAlias() 227
CreateCriteria() 209, 227
createQuery() 208
createSQLQuery() 208
creating object. See persistence
Criteria API 19

comparison operators 218
FetchMode 224
implicit joins 228–229
logical operators 221
MatchMode 220
nesting 227
polymorphic queries 217
purpose of 208
QBC, and 208
QBE, and 239
restriction 217
results, ordering 221
SQL function calls, and 220
string matching 220
theta-style joins 230
where clause, and 219

criteria query
comparison operators 219
wildcard search 220

cross join 350
cross-cutting concern 55
CRUD. See create, read, update,

delete (CRUD)
current_session_context_class

327
CurrentSessionContext 328
custom mapping type 173
custom type 62
custom type API 37

D

data
deprecated, ignoring 218
externalization 345

data access approaches 6
Data Access Object pattern

324–326

INDEX358
data binding 312–316
manual 313
using data-bound

controls 314
using NHibernate 315
with ObjectViews 315

Data Definition Language
(DDL) 349

data integrity, database
capabilities 7

data language 349
Data Manipulation Language

(DML) 350
data storage. See persistence
Data Transfer Object

(DTO) 345
assembly 346
data transfer, and 346
need for, questioning

345–346
problems with 346

Data Transfer Object
pattern 345

database
generation, executing

arbitrary SQL during 291
identity 76–79

persistent object, and 102
live, updating 295
lock table 149
schema maintenance,

automatic 294–296
setup 27
subsystem 8
systems that work with

NHibernate 352
trigger 205, 278
triggers for 303–305
update

first commit wins 147
last commit wins 147
merge conflicting

updates 147
database schema generation 67
database transaction 135–146
database-independent

application 23
data-bound control 314
data-integrity test 264
DataReaders 337
DataSet 6–7

as entity 12
association 16
filling with entity data

316–317

granularity 16
obtaining 237
presentation layer 13
typed 346
using LINQ 20

DataSets 337
DataTable, avoiding 7
DDL schema

creating with hbm2ddl
290–291

tools for 288
debugging 274–276
delete command, custom 248
Delete() 113
deleting object. See persistence
Dependency Injection

pattern 284
desc, query ordering 222
design goal 15, 272–274

availability 273
manageability 273
performance 273
reliability 273
scalability 273
securability 273

design pattern 7
detached object 78, 339

in conversations 336
when to use 344

development
database 295
list 354
tools 287

development process 287–296
bottom-up 293
domain-centric 261
meet-in-the-middle 294
middle-out 292–293
top-down 288–292

Dialect 37
specifying 42

dirty checking 62
automatic 33

dirty read 140
Disconnect() 139
discriminator 94
discriminator column 205
distinct 233
distributed cache 274
distributed transaction 345

enabling 346–348
domain expert 52
domain model 6–7, 53, 263–266

"smart" 323–324
adding logic 61–63

association 16, 58–61
attached to persistence

103, 106
behavior 54
business logic in 310
component 82–86
creating 26–27
detaching from

persistence 104
discriminator 94
distinguishing transient and

detached instances
106, 120–121

fine-grained 81–86
granularity 15
hand-coding 12
identifier 18, 102
identity 16, 64, 76–81
identity implementation 107
identity scope 104–105
immutable 71
implementation 55–63
implementing 166, 173, 263
instances, working with 338
joined-subclass 94
mapping 18
mapping to given

schemas 294
mutable 71
ORM without 54
persistence lifecycle 101–110
proxy 122
reattaching to persistence 106
referencing 16
state 54
subclass 94
testing 264
See also type

domain-centric 261
Domain-Driven Design 325
domain-driven development

(DDD) 261–262
Dont Repeat Yourself

(DRY) 326
drag and drop 6
DTO. See Data Transfer Object

(DTO)
durability 135
dynamic instantiation 232

E

eager fetching 126, 224–225
elements() function 241, 243
embedded resource 30

INDEX 359
EmptyInterceptor 281
EnableLike() 239
Enterprise Library 284
Enterprise Services application,

using NHibernate in
345–348

entity 167
applying Observer pattern

to 307–309
binding persistent 213
data binding 312–316
hand-coding 12
hidden 168
implementing 11–13
lifecycles of 167
persistence-abstracted 307
referencing with composite

key 301
retrieving multiple types in a

query 245
root 209, 228
See also domain model

entity framework 20
entity query 244
entity.ToString() 279
EntityNameDAO 268
Enumerable() method 210, 252
Enumerable() query 252
enumerated type 180–181
enumeration 181
Environment.BuildBytecode-

Provider() 71
equality

by value 108
consistency 107
using business key 108–110
using database identifier 107
using versioning 108
vs. identity 76–77
See also identity

Equals() 76, 106–110
Equals(object o) 77
equivalence 76
error, understanding and

solving 274–276
Evict() 156, 164
exception

.NET, built-in 276
from external libraries 276
throwing 276
understanding 274

exception.ToString() 274
Execute() 291
Expression class 217
expression, SQL 218

Expression.And() 221
Expression.Conjunction() 221
Expression.Disjunction() 221
Expression.Or() 221
extension API 37–38

F

failure
accessing databases 321
request checks 321

fetch 224
fetch attribute 251
fetching strategy 125–127

batch 127
collections and 129–130
eager 126, 225
fetch depth 130–131
global 130–131
immediate 126
lazy 126, 225
runtime association 225
selecting in mapping 127–132

field 26
fine-grained transaction 145
first commit wins 147
fixture 264
fluent interface 39
flush mode 139
Flush() 139

executing trigger 304
flushing 139
FlushMode 139
FlushMode.Never 343
foreign key 12, 81, 230
foreign key association 190–192
foreign-key attribute 290
formula 68
from clause 217, 242

fetch join 224
implicit, in collection

filters 240

G

garbage collection 102
Gateway pattern 325
generation database 67
generics, and minimizing

redundancy 329
Get() 112, 122
GetClassMetadata() 76
GetCollectionMetadata() 76
GetHashCode() 106–110, 300

getNamedQuery() 214
global assembly cache (GAC) 43
granularity of a session 150–151
group by clause 234
grouping, database

capabilities 7

H

HashedSet 252
Hashtable cache provider 159
having clause 236

rules governing 236
hbm2ddl (SchemaExport) 67

DDL schema generation
with 290–291

middle-out development
with 292

parameter descriptions 291
preparing mapping

metadata 288–289
top-down development

with 288
XML mapping attributes

for 289
hbm2net (CodeGenerator) 292

middle-out development
with 292

hbm2net.config file 293
HbmSerializer.Serialize() 40
Hello World 25–33
helper class 321
helper/utility classes 8
Hibernate mapping types,

system 167–181
Hibernate Query Language

(HQL) 19, 123–124, 208
aggregation, using 234
aliases 216

and joins 226–228
basic queries 215–222
collection filters 240–242
comparison operators 218
distinct results, getting 233
dynamic instantiation 232
expressing queries with 208
fetch join and 224–225
grouping 234
implicit joins 228–229
keywords, writing 216
logical operators 221
polymorphic queries 217
projection 232–234
restricting groups with

having 236

INDEX360
Hibernate Query Language
(HQL) (continued)

restriction 217
results, ordering 221
SQL function calls, and

220, 233
string matching 220
subqueries 242–243
theta-style joins 229
where clause, and 219

hibernate.cfg.xml 41, 163
hibernate.connection.release_

mode 140
HibernateException 276
high coupling, avoiding 284
HQL. See Hibernate Query

Language (HQL)
HTTP request context for

ASP.NET session
management 327

HttpContext API 327

I

IAuditable 279, 293
ICache 37
ICacheProvider 37
IClassPersister 37
ICompositeUserType 34, 37
IConnectionProvider 37
ICriteria 34, 110, 124, 208

introducing 36
method chaining 210
pagination 209
results, ordering 222

ICriteria API 121
ICriterion 124, 217
ICurrentSessionContext 327
<idbag> 196
IDbConnection 136

manual 41
identifier 18, 77

native generator 78
identity 16, 64, 76–81

.NET 107
implementation 107
process-scoped 104
reference equality 105
scope 104–105
transaction-scoped 104
vs. equality 76–77
See also equality

identity map 17
cache usage 18

Identity Map pattern 17

id-type attribute 204
IEditableObject 314
IEnhancedUserType 178
Iesi.Collections 59
Iesi.Collections library 252
Iesi.Collections.ListSet 186
Iesi.Collections.SortedSet 185
ignoreCase() 239
IHttpModule interface 334
IIdentifierGenerator 34, 37, 79
IInterceptor 34, 37, 278, 310
IInterceptor API 343
ILifecycle 34, 36
IList 196
immediate fetching 126
immutable 71
impedance mismatch. See para-

digm mismatch
implicit join 228–229
in quantifier 242
INamingStrategy 290

introducing 72
inconvenient column type

302–303
index mapping attribute 290
indexed collection 199

and inverse= 196
indexed map collection 194
indices() function 243
InfrastructureException 138
inheritance 7, 12, 16, 91

mapping 91
mapping strategy 98
minimizing redundancy,

and 329
table per class hierarchy

92–95
table per concrete class 92–93
table per subclass 92, 95–98

inner join 222
INotifyPropertyChanged

308, 314
InsensitiveLike() operator 239
insert

control 71
dynamic 71

insertion 350
instance, detached 106
instantiation, dynamic 232
integrating services 277–284
integrity, guaranteeing

referential 115
interceptor

enabling 282
writing 280–282

Interceptor API 280, 282

interfaces, core 35–36
INullableUserType 178
inverse attribute 89
Inversion of Control

pattern 284
IParameterizedType 37, 178
IPropertyAccessor 37
IProxyFactory 37
IQuery 34, 56, 110, 208

binding arbitrary arguments
with 213

introducing 36
method chaining 210
pagination 209

IS NULL 219
is null operator 214, 219
ISession 34, 56, 110, 150

as first-level cache 155
Close 103
Delete 103
Evict 104
introducing 35
Save 102
transparent write-behind 138
See also persistence

ISession API
obtaining new instances

of 321
query shortcuts 211

ISession.Connection
property 273, 316

ISession.CreateSQLQuery()
244

ISession.Get() 218
ISession.Load() 218
ISessionFactory 110, 157

creating 38–41
instance, configuring 44
introducing 35
naming 46

ISessionFactory.GetCurrent-
Session() 326–329

isolation issues 140
isolation level 140–141

choosing 141–143
read committed 141
read uncommitted 141
repeatable read 141
serializable 141
setting 143

ISQLQuery API 244–246
ISQLQuery instance,

creating 244
ISQLQuery.SetResultSet-

Mapping() 247
iterate() 210

INDEX 361
ITransaction 34, 37, 110,
137–138, 146

introducing 36
ITransactionFactory 37
IUserCollectionType 37, 178
IUserType 34, 37
IValidatable 34
IValidatable interface 36

J

JDBC connections 340
join 222–231, 350

ANSI-style 222
fetch 224–225
from clause and 223
implicit 223, 228–229
inner 222
means of expressing 223
options 223
outer 223
table 223
theta-style 223, 229
using alias with 226–228
where clause, and 223

join condition 223
joined-subclass 94

K

key
candidate 79
composite 80, 303

mapping table with
298–302

referencing entity with 301
foreign 190–192, 230
generation 79
natural 79
natural, mapping table

with 297–298
natural/primary 297–298
primary 79, 192–193

choosing 79–81
surrogate 79

keyword, case sensitivity 216

L

last commit wins 147
latency 345
layer

application 260–270, 320
building and testing 263

business logic. See business
logic layer

interaction 101
persistence, designing

320–335
persistence. See persistence

layer
presentation. See presentation

layer
separating business and

presentation 320
layered architecture 7–9
lazy association, initializing 131
lazy fetching, avoiding 202
lazy loading 17, 121, 126

always enable 275
application 123

LazyInitializationException 131
leakage of concerns 55
legacy application, porting to

NHibernate 215
legacy column, mapping with

custom type 302–303
legacy data 296–305
legacy database schema

296–305
changes needed 296
composite key mapping

298–303
integrating database triggers

with 303–305
natural key mapping 297–298
problems with 296
required changes 297

Length attribute 290
library migrations 295
lifecycle state

detached 167
persistent 167
transient 167

like operator and wildcard
searches 220

link table 130, 193
LINQ 20

over DataSet 20
to Entities 20
to NHibernate 20
to SQL 11

<list> 196
list collection 183, 194, 196
List() 210, 252
Load() 122
<load-collection> 246
loading objects on each request

in conversations 336

load-objects-on-every-
request 339

lock mode 144
lock table 149
Lock() 111
lock() 339
locking 140, 143

optimistic 147
alternative

implementations 151
offline 147–149

optimistic and pessimistic,
compared 149

pessimistic 143–146
LockMode 112, 144
log record, mapping 279
log4net 284

configuration 47
See also logging

LogEvent() 278
logging 40, 47–48

integrating 284
logging library 284
logic test 264–265
logic, ternary 218
logical expression,

constructing 218
logical operator 221
LogType 278
long session 151, 340

in conversations 336
when to use 344

long transaction 146
lost update 140
lower() function 220

M

maintainability 7, 9, 22
MakePersistent() 330
MakeTransient() 330
manageability 273
managed relationship 59
managed versioning, for

optimistic locking 147–149
many-to-many association

60, 130
bidirectional 195–196
component collections used

for 196–198
mapping 193–200
mappings 168
tables 168
unidirectional 193–194

INDEX362
many-to-one 87
mapping 30

many-to-one association 65, 229
implicit join 228
polymorphic 201–202

<map> 196
map collection 184
mapping

assembly 40
association 16, 30,

86–91, 189–200
unidirectional 86

attributes 65
basic 66–76
bidirectional many-to-

many 195–196
choice 66
class 40
component collection 187
composite key 298–303
correctness, testing 269
creating 29–30
data type 65
domain model 18
entity class 168
error 40
inheritance 91
inheritance strategy 98
IntelliSense 46
legacy columns 302–303
log record 279
many-to-many

association 168, 193–200
metadata 63–66
metamodels 173
natural key 297–298
one-to-many association

198–199
one-to-one association

189, 193
property 66–68
runtime 75–76
schema 46
strategy 98
synthetic identifier 297
table per class hierarchy

92–95
table per concrete class 92–93
table per subclass 92, 95–98
ternary association 197
unidirectional many-to-

many 193–194
unidirectional one-to-

many 199–200
XML 63–65

mapping attributes, XML
injection 84

mapping document 30
mapping file

Hibernate 215
working with 39

mapping metadata, preparation
of 288–289

mapping type, Hibernate
basic 169, 172–181
built-in 169–171
custom, creating 173
date and time 170
enumerated 181
Java primitive 169
JDK 171
large objects 171
object 171
system 167–181
using 172–181

marker attribute 278
marshal-by-reference object 272
MatchMode API 220
max() function 234
maxelement() function 243
maximum fetch depth 130
maxindex() function 243
medium-trust policy, issues

with 271
meet-in-the-middle

development 294
MemCache distributed cache

provider 163
merge conflicting updates 147
metadata 63–66

manipulating at runtime
75–76

metamodel 173
meta-type attribute 204
method chaining 39, 210
method, parameter-

binding 211–214
middle-out development

292–293
migrations library 295
Migrator 295
min() function 234
minelement() function 243
minindex() function 243
model, presentation 314
modeling, object vs.

relational 21
model-view-controller

(MVC) 266
Mono 352

multilayered architecture
260, 320

multiplicity 86–87
multiversion concurrency

control 140
mutable 71
MyGeneration 293
MySQL 10

See also relational database
management system

N

n+1 select problem
249–252, 275

named parameter 212
named query 214–215

used in persistence layer 331
named SQL query 246–248

calling stored procedures 247
namespace, default 74–75
naming convention 72–73
native SQL 243–249

queries 121
natural key 77

mapping 297
mapping table with 297–298

navigation, unidirectional
193–194

NCache distributed cache
provider 163

.NET
built-in exceptions 276
data binding 313
database access 6
features, solving issues related

to 270–272
generics 329
reflection 347
remoting 271
security policy, issues with 271

NHibernate 4
advanced configuration

44–48
alternatives 9
API 34
bug-tracking website 353
compatible database

systems 352
configuration 38–44
development list 354
downloads 352
forum 353
identity scope 105

INDEX 363
NHibernate (continued)
installing 25
learning curve 277
making sure it's the right

tool 276
online resources 353
reasons to use 15–20
SourceForge website 352
starting 43–44
uses of 320

NHibernate Query
Analyzer 216, 255

NHibernate.Burrow project 344
NHibernate.Cache.ICache-

ConcurrencyStrategy 158
NHibernate.Cache.ICache-

Provider 159
NHibernate.ConnectionRelease

Mode 139
NHibernate.Context

namespace 327
NHibernate.SQL 275
NHibernate.Tasks.

Hbm2Net-Task 292
NHibernate.Tool.hbm2ddl.

SchemaExport 288
NHibernate.Tool.hbm2net.

Console 292
NHibernateHelper class 321
NHibernateUtil.Initialize() 131
NHibernateUtil.IsInitialized()

131
noise 338
nonindexed collection 198
non-intrusive 12
nonstrict-read-write

concurrency strategy 158
nosetter.* strategy 69
not-null attribute 290
not-null column, avoiding 188
null operator 219
null value, testing for 219
nullable type 179–180

O

object
creating. See persistence
detached 78
equality 76–77

See also identity
graph 10
identity 76–81
making persistent 110–111

retrieving 121–133
by identifier 122–123

See also domain model
object identity and caching 154
object referencing 16
object retrieval, optimizing

p249–255
object role modeling 21
object.ReferenceEquals() 76–77
object/relational impedance

mismatch 12
object/relational mapping

(ORM) 4, 14
defined 21–23
problems in 125
reasons to use 21–23
triggers combined with 303
without domain model 54

object/relational persistence 76
ObjectDataSource 314
object-oriented programming

(OOP) 7, 12
object-oriented viewpoint 12
ObjectViews 13

data binding with 315
Observer pattern 278

applying to an entity 307–309
on clause, specifying join

condition 223
one-to-many 87–88
one-to-many association 198
one-to-one association

189–193, 232
implicit join 228

OnFlushDirty() 281
OnSave() 281–282
OOP. See object-oriented

programming (OOP)
OpenSession() 28
operations, grouping 60
operator

comparison, and
restriction 218

logical 221
optimistic locking 142, 147

alternative
implementations 151

vs. pessimistic 149
optimistic offline locking

147–149
optimistic-lock attribute 151
Oracle. See relational database

management system
order by clause 221
order-by 185

ordered collection 184
ordered pair 226
ORM. See object/relational

mapping (ORM)
outer join 223
outer-join attribute 251
outer-join loading 126

P

pagination 209
in SQL 210

paradigm mismatch
5, 12, 15–16

parallel class hierarchies
smell 346

parameters 212
binding 211–215
importance of 211
positional 212

parent/child relationship 90–91
pattern 261–262

Data Access Object 324–326
Data Transfer Object 345
Gateway 325
Repository 325

Pattern Language of Programs
(PLoP) conference 262

performance 22, 273
advice on eager loading 334
improving 275

with report queries 236
performance tuning 249
persistence 5–9

API 110–114
approaches in .NET 9–15
automated 55–56
automatic dirty checking

103, 113
by reachability 115–116
cascading 116–117
choices 4
context 327
conversation 17
deleting 103, 113–114
detaching domain model 104
dirty checking 62
hand-coding 10, 14
ignorance of 101
lifecycle 36, 101–110
management 110–114
mechanism 5
optimization 132–133
querying

using HQL 123–124

INDEX364
persistence (continued)
retrieving 112

techniques 121–133
saving 102, 110–111
state 101

detached 103–105
persistent 102–103
transient 102

transitive 114–121
transparency issue 109
transparent 17, 55–56
tuning 132–133
updating 111–112

transparently 113
using NHibernate 10

persistence ignorance 305–309
persistence layer 8, 15, 268–269

choosing 9
designing 320–335
generic 326–335
implementing 268, 321–326
testing 269

persistence logic, testing 269
persistence manager

56, 110–114
persistence-abstracted

entity 307
persistence-related code

260, 320
abstracting 305–307

persistent instance, caches in
sessions 340

pessimistic lock 339
pessimistic locking 143–146

not available 325
vs. optimistic 149

phantom read 141
placeholder 245
Plain Old CLR Object

(POCO) 56, 344
DTO as 345
making serializable 345
persistent class

generation 293
POCO. See Plain Old CLR

Object (POCO)
polymorphic association 201

and table-per-concrete-
class 204–205

polymorphic collection 203
polymorphic query 217
polymorphism 7, 12

association 92
mapping 200–205
query 92

portability 56
positional parameter 212
PostFlush() 281
presentation layer 8, 269–270

DataSet-based 13
implementing 269
web pages as 271

presentation model 314
Prevalence cache provider 159
primary key 12, 16, 77, 230

choosing 79–81
natural 79

primary key association 192–193
primitive types 81
problem domain 53
process scope cache 153
process-scoped identity 103–104
productivity 22
profiler 255
projection 124, 232–234, 350
property

access 68–70
derived 68
mapping 66–68
reading and setting state 63

property accessor 68
PropertyToColumnName() 73
proxy 122, 127, 131

problems with 202
proxy-safe typecast 202

Q

QBC. See Query by Criteria
(QBC) API

QBE. See Query by Example
(QBE)

<qualifyAssembly> 43
quantification 242, 351
query

advanced techniques 238–243
building with string

manipulations 238
by example 238–240
caching 253–255
comparisons between

keys 230
complex 15, 207
complex criteria 221
criteria, comparison

operators 219
dynamic 238–240
entity 244
Enumerable() 252
executing 208–215

externalizing strings to
mapping metadata 214

identifier value, comparisons
with 231

iterating results 210, 252
listing results 210
named 214–215
native SQL 243–249
NHibernate API 36
object reference comparisons

with 230
optimizing 215
parameter binding 211–214
polymorphic 217
polymorphism 16, 92
porting to mapping files 215
QBE and dynamic 239
report 231–237
restriction 217
results, ordering 221
retrieving multiple entity

types 245
root entities of criteria 209
scalar 244
simplest 215
SQL, named 246–248

calling stored
procedures 247

storing 214
substitutions 215
using aliases 216
using enumerated types

in 180
using LINQ 20
ways of expressing in

Hibernate 208
Query APIs

binding arbitrary arguments
with 213

creating a new instance
of 208–211

Enumerable() method
and 252

List() method and 252
method-chaining 210
purpose of 208
testing 216

Query by Criteria (QBC)
API 19, 124, 207

Query by Example (QBE)
124, 208, 239

<query> element 214
query engine,

implementing 18–20

INDEX 365
R

RDBMS. See relational database,
management system

read
committed 141
dirty 140
phantom 141
uncommitted 141
unrepeatable 141

readability 56
read-only concurrency

strategy 158
read-write concurrency

strategy 158
reassociation, selective, of

detached instances. 106
Reconnect() 139
redundancy, minimizing 329
reference data 155
reflection 65

optimization 70–71
Refresh() 304
relation, SQL 349
relational database 5, 7

management system 5
independence 22

relational model 349
relationship 91

"has a" 91
"is a" 91
between entities 12
managed 59
See also association

relationship table 130
reliability 273
repeatable read 141
report query 124, 231–237

aggregation 234
grouping 234
improving performances

with 236
projection 232–234
restricting groups with

having 236
select clause 232

Repository pattern 325
requirePermission attribute 271
restriction 217, 350

ignoring deprecated data 218
with comparison

operators 218
result, distinct 233
<resultset> 246
retrieve command, custom 248

<return> 246
<return-join> 246
<return-scalar> 246
reusability 7
rich object model 54
roll back 135
Rollback() 136
root entity (criteria

queries) 209, 228
Ruby on Rails

migrations 295
Ruby on Rails migrations 295

S

Save() 110
SaveOrUpdate() 120
saving. See persistence
scaffolding code 58
scalability 273
scalar query 244
schema

creating with hbm2ddl
290–291

database 288
maintenance, automatic

294–296
mapping domain models to

given 294
schema definition 63
SchemaExport 292
SchemaUpdate 295
search

case-insensitive 220
string-based 220
wildcard 220

second-level cache 35
securability 273
security, database capabilities 7
select clause

calling aggregate functions
in 234

calling SQL functions
from 233

changing results with 230
elements of results 233
grouping, and 234
projection, and 232–234
rules governing 236
subqueries 242
using aliases in 226–227

select new 232, 236
select-before-update 304
selective reassociation of

detached instances 106

self-documenting code, achieved
through refactoring 326

separation of concerns
55, 261, 263

serializability 57
serializable 141
services 277

integrating 277–284
loose coupling 277

session 28
flushing 138–139
granularity 150–151
temporary 282–283
See also persistence manager

Session API
kinds of state contained

in 340
long 340–344

session cache 156
managing 157

session factory 275
session management for

ASP.NET applications
332–335

session per request, when to
use 344

Session.Clear() 157
session.Connection

property 248
session.FlushMode 139
session.GetIdentifier(entity)

282
Session.Load() 202
session-context implementa-

tions built in to
NHibernate 327

SessionFactory 35
SessionFactory API

initialization 321
statelessness of 322
storage of 322

session-per-conversation 151
session-per-request 150, 333
session-per-request-with-

detached-objects 151
<set> 196

using for parent/child
relationships 199

set 59
set collection 181
SetDefaultAssembly() 75
SetDefaultNamespace() 75
SetEntity() 213
SetEnum() 213
SetFetchMode() 252

INDEX366
SetInt32() 213
SetMaxResults() 209
SetParameter() 214
SetProperties() 214
SetString() 212
SetTimestamp() 213
SharpDevelop 352
shotgun-change smell 346
show_sql 44
silver bullet, ORM 23
single point association 127–129
Singleton pattern 261
size() function 243
smell

code 346
parallel class hierarchies 346
shotgun-change 346

software development 3
some quantifier 242
sorted collection 184
sorting database capabilities 7
Sparx Systems Enterprise

Architect 52
SQL (Structured Query

Language) 6, 9
aggregate functions 234
arbitrary, executing during

database generation 291
backtick 72
basic concepts 349
books 6
command 14
dynamic generation 103
expressing queries with 208
function 68
inner joins 222
keywords, writing 216
logging 44
named 246–248

calling stored
procedures 247

outer joins 223
pagination 210
passthrough 243
query 18
query hints 207
quoted identifier 72
quoted identifiers 70
relation 349
schema 73–74
subselects 242–243

SQL databases. See relational
database, management
system

SQL function, calling 233

SQL injection attack 211
SQL Server 10, 42

See also relational database,
management system

SQL statement execution,
timing of 111

SqlCommand 6
sql-type attribute 290
stale data 337
StaleObjectStateException

145, 149
state, entity 54
state-oriented NHibernate vs

ADO.NET 335
stored procedure 7, 247
string

concatenation 220
matching 220

string manipulation, building
queries with 238

structured data 7
subclass 94
subquery 242–243

correlated 242
uncorrelated 242

subselect 68, 242–243, 351
sum() function 234
surrogate key 16, 79, 109
synthetic identifier 79

mapping 297
SysCache cache provider 159
system transaction 135–146
System.Collections.IDictionary

41
System.Collections.SortedList

185
System.Collections.Specialized.

ListDictionary 186
System.Data.IsolationLevel 143
System.Diagnostics API 284
System.EnterpriseServices

assembly 346
System.String 185

T

table
audit logs 277
mapping with composite

keys 298–302
mapping with natural

keys 297–298
relationship 130

table adapter 14

table per class hierarchy 92–95
table per concrete class 92–93

and polymorphic
associations 204–205

table per subclass 92, 95–98
TableName() 73
tables, mapping with composite

keys 303
ternary association 197
ternary logic 218, 264
test

data integrity 264
logic 264–265

testability 56
test-driven development

(TDD) 261–262
theta-style join 223, 229
tier, externalizing data

between 345
timestamp cache 254
toolset, NHibernate hbm2ddl.

See hbm2ddl
(SchemaExport)

top-down development 288–292
ToString(object entity)

method 317
Transaction 111
transaction 15

boundaries
declaring with ITransaction

methods 137
marking 136

coarse-grained 145
committed 135
conversation 17
demarcation 136
entity 102
fine-grained 145
isolation 140

caching, and 154
levels 141

rolled back 135
system states 136
transparent write-behind

103, 113
transaction scope cache 153
transaction.WasCommitted 137
transactional write-behind 33
transaction-scoped identity 104
transience 113–114
transient object 6
transitive persistence 114–121
transparent persistence

55–56, 344

INDEX 367
transparent transactional
write-behind 103, 113

transparent write behind 138
trigger, database 278, 303–305
tuple 349
type

custom 62
mapping legacy columns

with 302–303
mapping 66
NHibernate 37
primitive 81
value 81–82
See also also domain model

type discriminator 93, 204
type system 167–181
typesafe enumeration 179–181

U

UML class diagram 52
UMLet 52
uncorrelated subquery 242
unidirectional many-to-one

87–88
Unique attribute 290
unique constraint 290
unique-key attribute 290
uniqueResult() 218
unit of work 16–18

Unit of Work pattern 17
unit test 55
unit testing 262
unrepeatable read 141
unsaved-value 297

attribute 120
update

command, custom 248
control 71
dynamic 71
lost 140

Update() 111
update() 339
upper() function 220
user interface. See presentation

layer
user transaction 146
user-defined column type 15
UserType API 173–176, 302–303
utility class 321

V

validation for proxy 127
value type 81–82

collections of, mapping
181–189

storing 181–186
VelocityRenderer 293
version check, manual 338

versioning
unsaved-value 120
usage with equality 108

Visio 21, 52
Visual Studio 6, 14

creating an NHibernate
project 25–26

W

web application 13, 271
security policy, issues with 271

web page as presentation
layer 271

web tier, separation from
business-logic tiers 345

where clause
achieving restriction 217
arithmetic expression

support by 219
calling SQL functions in 220
evaluating expressions

with 218
restricting rows with 236
specifying join condition 223
subqueries in 242

Windows application 13
implementing

conversations 342
wrapping class 314
write-behind 47

	NHibernate
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the authors
	About the title
	About the cover illustration

	Discovering ORM with NHibernate
	Object/relational persistence in .NET
	1.1 What is persistence?
	1.1.1 Relational databases
	1.1.2 Understanding SQL
	1.1.3 Using SQL in .NET applications
	1.1.4 Persistence in object-oriented applications
	1.1.5 Persistence and the layered architecture

	1.2 Approaches to persistence in .NET
	1.2.1 Choice of persistence layer
	1.2.2 Implementing the entities
	1.2.3 Displaying entities in the user interface
	1.2.4 Implementing CRUD operations

	1.3 Why do we need NHibernate?
	1.3.1 The paradigm mismatch
	1.3.2 Units of work and conversations
	1.3.3 Complex queries and the ADO.NET Entity Framework

	1.4 Object/relational mapping
	1.4.1 What is ORM?
	1.4.2 Why ORM?

	1.5 Summary

	Hello NHibernate!
	2.1 “Hello World” with NHibernate
	2.1.1 Installing NHibernate
	2.1.2 Create a new Visual Studio project
	2.1.3 Creating the Employee class
	2.1.4 Setting up the database
	2.1.5 Creating an Employee and saving to the database
	2.1.6 Loading an Employee from the database
	2.1.7 Creating a mapping file
	2.1.8 Configuring your application
	2.1.9 Updating an Employee
	2.1.10 Running the program

	2.2 Understanding the architecture
	2.2.1 The core interfaces
	2.2.2 Callback interfaces
	2.2.3 Types
	2.2.4 Extension interfaces

	2.3 Basic configuration
	2.3.1 Creating a SessionFactory
	2.3.2 Configuring the ADO.NET database access

	2.4 Advanced configuration settings
	2.4.1 Using the application configuration file
	2.4.2 Logging

	2.5 Summary

	NHibernate deep dive
	Writing and mapping classes
	3.1 The CaveatEmptor application
	3.1.1 Analyzing the business domain
	3.1.2 The CaveatEmptor domain model

	3.2 Implementing the domain model
	3.2.1 Addressing leakage of concerns
	3.2.2 Transparent and automated persistence
	3.2.3 Writing POCOs
	3.2.4 Implementing POCO associations
	3.2.5 Adding logic to properties

	3.3 Defining the mapping metadata
	3.3.1 Mapping using XML
	3.3.2 Attribute-oriented programming

	3.4 Basic property and class mappings
	3.4.1 Property mapping overview
	3.4.2 Using derived properties
	3.4.3 Property access strategies
	3.4.4 Taking advantage of the reflection optimizer
	3.4.5 Controlling insertion and updates
	3.4.6 Using quoted SQL identifiers
	3.4.7 Naming conventions
	3.4.8 SQL schemas
	3.4.9 Declaring class names
	3.4.10 Manipulating metadata at runtime

	3.5 Understanding object identity
	3.5.1 Identity versus equality
	3.5.2 Database identity with NHibernate
	3.5.3 Choosing primary keys

	3.6 Fine-grained object models
	3.6.1 Entity and value types
	3.6.2 Using components

	3.7 Introducing associations
	3.7.1 Unidirectional associations
	3.7.2 Multiplicity
	3.7.3 The simplest possible association
	3.7.4 Making the association bidirectional
	3.7.5 A parent/child relationship

	3.8 Mapping class inheritance
	3.8.1 Table per concrete class
	3.8.2 Table per class hierarchy
	3.8.3 Table per subclass
	3.8.4 Choosing a strategy

	3.9 Summary

	Working with persistent objects
	4.1 The persistence lifecycle
	4.1.1 Transient objects
	4.1.2 Persistent objects
	4.1.3 Detached objects
	4.1.4 The scope of object identity
	4.1.5 Outside the identity scope
	4.1.6 Implementing Equals() and GetHashCode()

	4.2 The persistence manager
	4.2.1 Making an object persistent
	4.2.2 Updating the persistent state of a detached instance
	4.2.3 Retrieving a persistent object
	4.2.4 Updating a persistent object transparently
	4.2.5 Making an object transient

	4.3 Using transitive persistence in NHibernate
	4.3.1 Persistence by reachability
	4.3.2 Cascading persistence with NHibernate
	4.3.3 Managing auction categories
	4.3.4 Distinguishing between transient and detached instances

	4.4 Retrieving objects
	4.4.1 Retrieving objects by identifier
	4.4.2 Introducing Hibernate Query Language
	4.4.3 Query by Criteria
	4.4.4 Query by Example
	4.4.5 Fetching strategies
	4.4.6 Selecting a fetching strategy in mappings
	4.4.7 Tuning object retrieval

	4.5 Summary

	Transactions, concurrency, and caching
	5.1 Understanding database transactions
	5.1.1 ADO.NET and Enterprise Services/COM+ transactions
	5.1.2 The NHibernate ITransaction API
	5.1.3 Flushing the session
	5.1.4 Understanding connection-release modes
	5.1.5 Understanding isolation levels
	5.1.6 Choosing an isolation level
	5.1.7 Setting an isolation level
	5.1.8 Using pessimistic locking

	5.2 Working with conversations
	5.2.1 An example scenario
	5.2.2 Using managed versioning
	5.2.3 Optimistic and pessimistic locking compared
	5.2.4 Granularity of a session
	5.2.5 Other ways to implement optimistic locking

	5.3 Caching theory and practice
	5.3.1 Caching strategies and scopes
	5.3.2 The NHibernate cache architecture
	5.3.3 Caching in practice

	5.4 Summary

	Advanced mapping concepts
	6.1 Understanding the NHibernate type system
	6.1.1 Associations and value types
	6.1.2 Bridging from objects to database
	6.1.3 Mapping types
	6.1.4 Built-in mapping types
	6.1.5 Using mapping types

	6.2 Mapping collections of value types
	6.2.1 Storing value types in sets, bags, lists, and maps
	6.2.2 Collections of components

	6.3 Mapping entity associations
	6.3.1 One-to-one associations
	6.3.2 Many-to-many associations

	6.4 Mapping polymorphic associations
	6.4.1 Polymorphic many-to-one associations
	6.4.2 Polymorphic collections
	6.4.3 Polymorphic associations and table-per-concrete-class

	6.5 Summary

	Retrieving objects efficiently
	7.1 Executing queries
	7.1.1 The query interfaces
	7.1.2 Binding parameters
	7.1.3 Using named queries
	7.1.4 Using query substitutions

	7.2 Basic queries for objects
	7.2.1 The simplest query
	7.2.2 Using aliases
	7.2.3 Polymorphic queries
	7.2.4 Restriction
	7.2.5 Comparison operators
	7.2.6 String matching
	7.2.7 Logical operators
	7.2.8 Ordering query results

	7.3 Joining associations
	7.3.1 NHibernate join options
	7.3.2 Fetching associations
	7.3.3 Using aliases with joins
	7.3.4 Using implicit joins
	7.3.5 Theta-style joins
	7.3.6 Comparing identifiers

	7.4 Writing report queries
	7.4.1 Projection
	7.4.2 Using aggregation
	7.4.3 Grouping
	7.4.4 Restricting groups with having
	7.4.5 Improving performance with report queries
	7.4.6 Obtaining DataSets

	7.5 Advanced query techniques
	7.5.1 Dynamic queries
	7.5.2 Collection filters
	7.5.3 Subqueries

	7.6 Native SQL
	7.6.1 Using the ISQLQuery API
	7.6.2 Named SQL queries
	7.6.3 Customizing create, retrieve, update, and delete commands

	7.7 Optimizing object retrieval
	7.7.1 Solving the n+1 selects problem
	7.7.2 Using Enumerable() queries
	7.7.3 Caching queries
	7.7.4 Using profilers and NHibernate Query Analyzer

	7.8 Summary

	NHibernate in the real world
	Developing NHibernate applications
	8.1 Inside the layers of an NHibernate application
	8.1.1 Using patterns and methodologies
	8.1.2 Building and testing the layers
	8.1.3 The domain model
	8.1.4 The business layer
	8.1.5 The persistence layer
	8.1.6 The presentation layer

	8.2 Solving issues related to .NET features
	8.2.1 Working with web applications
	8.2.2 .NET remoting

	8.3 Achieving goals and solving problems
	8.3.1 Design goals applied to an NHibernate application
	8.3.2 Identifying and solving problems
	8.3.3 Use the right tool for the right job

	8.4 Integrating services: the case of audit logging
	8.4.1 Doing it the hard way
	8.4.2 Doing it the NHibernate way
	8.4.3 Other ways of integrating services

	8.5 Summary

	Writing real-world domain models
	9.1 Development processes and tools
	9.1.1 Top down: generating the mapping and the database from entities
	9.1.2 Middle out: generating entities from the mapping
	9.1.3 Bottom up: generating the mapping and the entities from the database
	9.1.4 Automatic database schema maintenance

	9.2 Legacy schemas
	9.2.1 Mapping a table with a natural key
	9.2.2 Mapping a table with a composite key
	9.2.3 Using a custom type to map legacy columns
	9.2.4 Working with triggers

	9.3 Understanding persistence ignorance
	9.3.1 Abstracting persistence-related code
	9.3.2 Applying the Observer pattern to an entity

	9.4 Implementing the business logic
	9.4.1 Business logic in the business layer
	9.4.2 Business logic in the domain model
	9.4.3 Rules that aren’t business rules

	9.5 Data-binding entities
	9.5.1 Implementing manual data binding
	9.5.2 Using data-bound controls
	9.5.3 Data binding using NHibernate
	9.5.4 Data binding using ObjectViews

	9.6 Filling a DataSet with entities’ data
	9.6.1 Converting an entity to a DataSet
	9.6.2 Using NHibernate to assist with conversion

	9.7 Summary

	Architectural patterns for persistence
	10.1 Designing the persistence layer
	10.1.1 Implementing a simple persistence layer
	10.1.2 Implementing a generic persistence layer

	10.2 Implementing conversations
	10.2.1 Approving a new auction
	10.2.2 Loading objects on each request
	10.2.3 Using detached persistent objects
	10.2.4 Using the session-per-conversation pattern
	10.2.5 Choosing an approach to conversations

	10.3 Using NHibernate in an Enterprise Services application
	10.3.1 Rethinking DTOs
	10.3.2 Enabling distributed transactions for NHibernateHelper

	10.4 Summary

	appendix A: SQL fundamentals
	Tables
	Relational model
	DDL and DML
	Table operations
	Queries

	appendix B: Going forward
	What you need
	Practice makes perfect
	Problem solving
	Staying up to date

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

